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FOREWORD

The Guide to the Software Engineering Body of Knowledge (SWEBOK Guide), published by the
IEEE Computer Society (IEEE CS), represents the current state of generally accepted, con-
sensus-based knowledge emanating from the interplay between software engineering theory
and practice. Its objectives include the provision of guidance for learners, researchers, and prac-
titioners to identify and share a common understanding of “generally accepted knowledge” in
software engineering, defining the boundary between software engineering and related disci-
plines, and providing a foundation for certifications and educational curricula.

'The origins of the Guide go back to the early 2000s. Much like the software engineering dis-
cipline, the Guide has continued to evolve over the last 20 years to reflect society’s industrial,
educational, social, technical, and technological changes. Publication of the 2014 version of the
Guide (SWEBOK Guide V3) was a significant milestone in establishing software engineering as
a recognized engineering discipline.

The goal of developing this update (SWEBOK Guide V4) to the Guide is to improve the
Guide’s currency, readability, consistency, and usability. The Guide consists of 18 knowledge
areas (KAs) followed by several appendixes. A KA is an identified area of software engineering
defined by its knowledge requirements and described in terms of its component processes, prac-
tices, inputs, outputs, tools, and techniques. Three appendixes provide, respectively, the speci-
fications for the KA descriptions, an annotated set of relevant standards for each KA, and a list
of references cited in the Guide.

All KAs have been updated to reflect changes in software engineering since the publication
of Guide V3, including modern development practices, new techniques, and the advancement
of standards. One significant change is that Agile and DevOps have been incorporated into
almost all KAs because these models have been widely accepted since the previous publication
of the Guide. Agile models typically involve frequent demonstrations of working software to
a customer in short, iterative cycles. Agile practices exist across KAs. Furthermore, emerging
platforms and technologies, including artificial intelligence (AI), machine learning (ML), and
the internet of things (IoT), have been incorporated into the foundation KAs.

To reflect areas that are becoming particularly important in modern software engineering,
the following KAs have been added: the Software Architecture KA, Software Security KA,
and Software Engineering Operations KA.

'This Guide, written under the auspices of the Professional and Educational Activities Board
of the IEEE Computer Society, represents the next step in the evolution of the software engi-
neering profession.

Steve McConnell
Chief Executive Officer, Construx Software

Hironori Washizaki
President-Elect 2024, President 2025, IEEE Computer Society
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FOREWORD TO THE 2014 EDITION

Every profession is based on a body of knowledge, although that knowledge is not always
defined in a concise manner. In cases where no formality exists, the body of knowledge is “gen-
erally recognized” by practitioners and may be codified in a variety of ways for a variety of dif-
ferent uses. But in many cases, a guide to a body of knowledge is formally documented, usually
in a form that permits it to be used for such purposes as development and accreditation of aca-
demic and training programs, certification of specialists, or professional licensing. Generally,
a professional society or similar body maintains stewardship of the formal definition of a body
of knowledge.

During the past forty-five years, software engineering has evolved from a conference catch-
phrase into an engineering profession, characterized by 1) a professional society, 2) standards
that specify generally accepted professional practices, 3) a code of ethics, 4) conference proceed-
ings, 5) textbooks, 6) curriculum guidelines and curricula, 7) accreditation criteria and accred-
ited degree programs, 8) certification and licensing, and 9) this Guide to the Body of Knowledge.

In this Guide to the Software Engineering Body of Knowledge, the IEEE Computer Society
presents a revised and updated version of the body of knowledge formerly documented as
SWEBOK 2004; this revised and updated version is denoted SWEBOK Guide V3. This work is
in partial fulfillment of the Society’s responsibility to promote the advancement of both theory
and practice for the profession of software engineering.

It should be noted that this Guide does not present the entire body of knowledge for soft-
ware engineering but rather serves as a guide to the body of knowledge that has been devel-
oped over more than four decades. The software engineering body of knowledge is constantly
evolving. Nevertheless, this Guide constitutes a valuable characterization of the software engi-
neering profession.

In 1958, John Tukey, the world-renowned statistician, coined the term software. The term
software engineering was used in the title of a NATO conference held in Germany in 1968. The
IEEE Computer Society first published its Transactions on Software Engineering in 1972, and
a committee for developing software engineering standards was established within the IEEE
Computer Society in 1976.

In 1990, planning was begun for an international standard to provide an overall view of
software engineering. The standard was completed in 1995 with designation ISO/IEC 12207
and given the title of Standard for Software Life Cycle Processes. The IEEE version of 12207
was published in 1996 and provided a major foundation for the body of knowledge captured
in SWEBOK 2004. The current version of 12207 is designated as ISO/IEC 12207:2008 and
IEEE 12207-2008; it provides the basis for this SWEBOK Guide V3.

'This Guide to the Software Engineering Body of Knowledge is presented to you, the reader, as a
mechanism for acquiring the knowledge you need in your lifelong career development as a soft-
ware engineering professional.

Dick Fairley, Chair
Software and Systems Engineering Committee
IEEE Computer Society

Don Shafer, Vice President
Proféssional Activities Board IEEE Computer Society
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FOREWORD TO THE 2004 EDITION

In this Guide, the IEEE Computer Society establishes for the first time a baseline for the body
of knowledge for the field of software engineering, and the work partially fulfills the Society’s
responsibility to promote the advancement of both theory and practice in this field. In so doing,
the Society has been guided by the experience of disciplines with longer histories but was not
bound either by their problems or their solutions.

It should be noted that the Guide does not purport to define the body of knowledge but
rather to serve as a compendium and guide to the body of knowledge that has been developing
and evolving over the past four decades. Furthermore, this body of knowledge is not static. The
Guide must, necessarily, develop and evolve as software engineering matures. It nevertheless
constitutes a valuable element of the software engineering infrastructure.

In 1958, John Tukey, the world-renowned statistician, coined the term soffware. The term
software engineering was used in the title of a NATO conference held in Germany in 1968.
The IEEE Computer Society first published its Transactions on Software Engineering in 1972.
The committee established within the IEEE Computer Society for developing software engi-
neering standards was founded in 1976.

The first holistic view of software engineering to emerge from the IEEE Computer Society
resulted from an effort led by Fletcher Buckley to develop IEEE standard 730 for software
quality assurance, which was completed in 1979. The purpose of IEEE Std. 730 was to provide
uniform, minimum acceptable requirements for preparation and content of software quality
assurance plans. This standard was influential in completing the developing standards in the
following topics: configuration management, software testing, software requirements, software
design, and software verification and validation.

During the period 1981-1985, the IEEE Computer Society held a series of workshops con-
cerning the application of software engineering standards. These workshops involved practi-
tioners sharing their experiences with existing standards. The workshops also held sessions on
planning for future standards, including one involving measures and metrics for software engi-
neering products and processes. The planning also resulted in IEEE Std. 1002, Taxonomy of
Software Engineering Standards (1986), which provided a new, holistic view of software engi-
neering. The standard describes the form and content of a software engineering standards tax-
onomy. It explains the various types of software engineering standards, their functional and
external relationships, and the role of various functions participating in the software life cycle.

In 1990, planning for an international standard with an overall view was begun. The plan-
ning focused on reconciling the software process views from IEEE Std. 1074 and the revised
US DoD standard 2167A. The revision was eventually published as DoD Std. 498. The inter-
national standard was completed in 1995 with designation, ISO/IEC 12207, and given the title
of Standard for Software Life Cycle Processes. Std. ISO/ IEC 12207 provided a major point of
departure for the body of knowledge captured in this book.

It was the IEEE Computer Society Board of Governors’ approval of the motion put forward
in May 1993 by Fletcher Buckley which resulted in the writing of this book. The Association
for Computing Machinery (ACM) Council approved a related motion in August 1993. The two
motions led to a joint committee under the leadership of Mario Barbacci and Stuart Zweben
who served as cochairs. The mission statement of the joint committee was “To establish the
appropriate set(s) of criteria and norms for professional practice of software engineering upon
which industrial decisions, professional certification, and educational curricula can be based.”
The steering committee organized task forces in the following areas:
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1. Define Required Body of Knowledge and Recommended Practices.
2. Define Ethics and Professional Standards.
3. Define Educational Curricula for undergraduate, graduate, and continuing education.

'This book supplies the first component: required body of knowledge and recommended
practices.

The code of ethics and professional practice for software engineering was completed in 1998
and approved by both the ACM Council and the IEEE Computer Society Board of Governors.
It has been adopted by numerous corporations and other organizations and is included in sev-
eral recent textbooks.

The educational curriculum for undergraduates is being completed by a joint effort of the
IEEE Computer Society and the ACM and is expected to be completed in 2004.

Every profession is based on a body of knowledge and recommended practices, although
they are not always defined in a precise manner. In many cases, these are formally documented,
usually in a form that permits them to be used for such purposes as accreditation of academic
programs, development of education and training programs, certification of specialists, or pro-
fessional licensing. Generally, a professional society or related body maintains custody of such
a formal definition. In cases where no such formality exists, the body of knowledge and recom-
mended practices are “generally recognized” by practitioners and may be codified in a variety
of ways for different uses.

It is hoped that readers will find this book useful in guiding them toward the knowledge and
resources they need in their lifelong career development as software engineering professionals.

'The book is dedicated to Fletcher Buckley in recognition of his commitment to promoting
software engineering as a professional discipline and his excellence as a software engineering
practitioner in radar applications.

Leonard L. Tripp, IEEE Fellow 2003
Chair, Professional Practices Committee, IEEE
Computer Society (2001-2003)
Chair, Joint IEEE Compuler Society and ACM
Steering Committee for the Establishment of
Software Engineering as a Profession (1998—1999)
Chair, Software Engineering Standards Committee,
IEEE Computer Society (1992—1998)
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Introduction to the Guide

ACRONYMS
KA Knowledge Area
SWEBOK Software Engineering Body
of Knowledge

Publication of the 2014 version of the Guide
to the Software Engineering Body of Knowledge
(SWEBOK Guide V3) was a major milestone in
establishing software engineering as a recog-
nized engineering discipline. The goal of devel-
oping this update (Version 4) to the SWEBOK
Guide is to improve the Guide’s currency, read-
ability, consistency and usability. The content
of the Guide consists of 18 knowledge areas
(KAs) followed by several appendixes. A KA is
an identified area of software engineering and
is described in terms of its generally accepted
knowledge, such as its component processes,
practices, inputs, outputs, tools and tech-
niques. Three appendixes provide, respectively,
the specifications for the KA descriptions, an
annotated set of relevant standards for each
KA, and a list of references cited in the Guide.

All KAs have been updated to reflect
changes in software engineering since the
publication of the Guide V3, including modern
development practices, new techniques, and
the advancement of standards. One signifi-
cant change is that Agile and DevOps have
been incorporated into almost all KAs because
these models have been widely accepted since
the previous publication of the Guide. Agile
models typically involve frequent demonstra-
tions of working software to a customer in
short, iterative cycles. Agile practices exist
across KAs. Furthermore, emerging plat-
forms and technologies, including artificial

1 https://www.computer.org/sevocab.

intelligence (Al), machine learning (ML) and
the internet of things (IoT’), have been incor-
porated into the foundation KAs.

To reflect areas that are becoming partic-
ularly important in modern software engi-
neering, the following KAs have been added:
the Software Architecture KA, Software
Security KA and Software Engineering
Operations KA.

'This Guide, written under the auspices of
the Professional and Educational Activities
Board of the IEEE Computer Society, rep-
resents a next step in the evolution of the soft-
ware engineering profession.

1. WhatIs Software Engineering?

ISO/IEC/IEEE Systems and Software
Engineering Vocabulary (SEVOCAB)' defines
software as “computer programs, procedures
and possibly associated documentation and
data pertaining to the operation of a computer
system”.! And software engineering is defined
as “the application of a systematic, disciplined,
quantifiable approach to the development,
operation, and maintenance of software; that
is, the application of engineering to software”
[1]. Historically, software engineering has
been defined in various ways, such as “the prac-
tical application of scientific knowledge to the
design and construction of computer programs
and the associated documentation required
to develop, operate, and maintain them” [2]
and “the technological and managerial disci-
pline concerned with systematic production
and maintenance of software products that are
developed and modified on time and within
cost estimates” [3]. Although these definitions
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differ in detail, they have an essential com-
monality in that they both deal with software
development and maintenance. Furthermore,
the application of scientific knowledge (men-
tioned in the first definition) can be described
as a technological discipline (a phrase used in
the second definition). As “scientific” implies a
systematic and quantifiable approach, the ini-
tial definition also expresses an idea common
in past definitions of the discipline.

Software engineering occupies a position
between the mathematical and physical disci-
plines of computer science and technology on
the one hand and the work of applying those
findings to solve the problems of particular
application domains on the other [3]. Science
is about discovering new things. On the other
hand, engineering is about applying that
knowledge to solve real-world problems with
limited resources cost-effectively. As such,
the engineering discipline of a given scientific
field requires skills and knowledge about rel-
evant “practice.” Further, as engineering con-
cerns cost-effective solutions to real-world
problems, all engineering disciplines involve
engineering economics, which is the analysis
of theoretically possible solutions to identify
the most cost-effective one. In essence, this
Guide distills the relevant theory of computer
science and engineering into the three foun-
dation KAs, while the remaining KAs cat-
alog the practice and engineering economics
of software engineering.

Software engineering techniques can be
viewed as specializations of techniques of more
general disciplines, such as project manage-
ment, systems engineering and quality man-
agement [3]. Furthermore, a software project
must implement requirements imposed by
cross-cutting disciplines such as dependability
and safety. Software engineering and com-
puter science are related but distinct in the
same way chemical engineering and chemistry
are related but distinct. Scientific disciplines,
such as computer science and chemistry, aim to
extend human knowledge. Effective require-
ments elicitation techniques, design princi-
ples like cohesion and coupling, appropriate
branch-merge strategies, conducting a proper

peer review, and assessing the cost of quality
are a few examples of critical software engi-
neering practices that are of little or no concern
to computer science. In engineering, science
and practice are applied to generate poten-
tial solutions to the real-world problem, and
engineering economics is used to identify the
most cost-effective one. In the same way that
it would not make sense to send a chemist to
solve a chemical engineering problem, it does
not make sense to send a computer scientist to
solve a software engineering problem.

In addition to computer science, software
engineering is related to several other disci-
plines and professional areas, such as indus-
trial engineering, dependability engineering,
and safety and security engineering.

2. What Are the Objectives of the
SWEBOK Guide?

The Guide should not be confused with the
body of knowledge itself, which exists in the
published literature. The Guide’s purpose is
to describe the generally accepted portion of
the body of knowledge, organize that portion,
and provide topical access to it.

'The SWEBOK Guide was established with
the following five objectives:

1. To promote a consistent view of software
engineering worldwide

2. To specify the scope and clarify the place
of software engineering with respect to
other disciplines, such as computer sci-
ence, project management, computer
engineering and mathematics

3. To characterize the contents of the soft-
ware engineering discipline

4. To provide topical access to the Software
Engineering Body of Knowledge

5. To provide a foundation for curriculum
development and for individual certifica-
tion and licensing materials

The first objective, to promote a consis-
tent worldwide view of software engineering,
was supported by a development process
that engaged 130+ reviewers from various



countries. More information regarding the
development process can be found at www.
swebok.org. Professional and learned soci-
eties and public agencies involved in soft-
ware engineering were contacted, made
aware of this project to update the SWEBOK
Guide, and invited to participate in the review
process. Associate editors were recruited
from America, Asia, Europe, and Oceania.
Presentations on the project were made at var-
ious international venues.

The second objective, to specify the scope
of software engineering, underlies the fun-
damental organization of the Guide. Material
that falls within this discipline is organized
into the 18 KAs listed in Table I.1. Each KA
is treated as a chapter in this Guide. Among
them, Chapters 1-15 are regarded as the soft-
ware engineering KAs, while Chapters 16-18
address foundation KAs.
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In specifying the scope of the discipline,
it is also important to identify disciplines
that intersect with software engineering. To
this end, the SWEBOK V4 Guide continues
to recognize eleven related disciplines, listed
in Table 1.2. Software engineers should, of
course, be knowledgeable about these dis-
ciplines (and KA descriptions in this Guide
might refer to them). However, characterizing
the knowledge of related disciplines is not an
objective of the SWEBOK Guide.

TABLE 1.2. RELATED DISCIPLINES

Business Analysis

Computer Engineering

Computer Science

Cybersecurity

Data Science

General Management

TABLE I.1.THE 18 SWEBOK KAS

Software Requirements

Software Architecture

Software Design

Software Construction

Software Testing

Software Engineering Operations

Software Maintenance

Software Configuration Management

OO IN ||

Software Engineering Management

—_
o

. Software Engineering Process

—_
[N

. Software Engineering Models
and Methods

12. Software Quality
13. Software Security

14. Software Engineering
Professional Practice

15. Software Engineering Economics

16. Computing Foundations

17. Mathematical Foundations

18. Engineering Foundations

Information Systems and Technology

Mathematics

Project Management

Quality Management

Systems Engineering

The relevant elements of computer science,
mathematics, and engineering foundations
are presented in the Computing Foundations
KA, Mathematical Foundations KA, and
Engineering Foundations KA of the Guide
(Chapters 16, 17 and 18).

HIERARCHICAL ORGANIZATION

The organization of the KA chapters supports
the third project objective — to characterize
the contents of software engineering. The
detailed specifications provided by the proj-
ect’s editorial team to the associate editors
regarding the contents of the KA descriptions
can be found in Appendix A.

The Guide uses a hierarchical organiza-
tional structure to decompose each KA into
a set of topics with recognizable labels. Each
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KA provides a two- or three-level break-
down, which provides a reasonable way to
find topics of interest. The Guide treats the
selected topics in a way that is compatible
with major schools of thought and sepa-
rates the topics into subtopics that are gen-
erally found in industry and in software
engineering literature and standards. The
breakdowns are not designed for particular
application domains, business uses, manage-
ment philosophies, development methods and
so forth. Each topic description is meant only
to give the reader a general understanding
of the topic and to enable the reader to find
reference material. The body of knowledge
is found in the reference materials, not in
the Guide.

Software plays a core role in various appli-
cation and technological domains, such as
automotive, legal, health care, and finance.
Differences in application domains and busi-
ness models (e.g., custom applications, and
open source applications) and system types
(e.g., enterprise and cloud systems, embedded
and Iol systems, and AI/ML-based sys-
tems) may influence what practices are
adopted. Major special techniques and prac-
tices specific to certain system types are
also discussed in some KAs, especially the
Software Requirements KA, the Software
Testing KA, the Software Quality KA, the
Software Security KA and the Computing
Foundations KA.

REFERENCE MATERIAL AND
MATRIX

To provide topical access to the knowledge
— the fourth project objective — the Guide
identifies authoritative reference material for
each KA. In addition, Appendix C provides
a Consolidated Reference List for the entire
Guide. Each KA includes relevant references
from the Consolidated Reference List as well
as a matrix connecting the reference materials
to the topics covered.

Please note that the Guide does not attempt
to be comprehensive in its citations. Much
suitable and excellent material is not refer-
enced. However, the material included in the
Consolidated Reference List provides further
information about the topics described.

DEPTH OF TREATMENT

To achieve the Guide’s fifth objective — to
provide a foundation for curriculum devel-
opment, certification and licensing — the
criterion of generally accepted knowledge has
been applied. This is distinct from advanced
and research knowledge (on the grounds of
maturity) and from specialized knowledge
(on the grounds of generality of applica-
tion). The equivalent term generally recog-
nized comes from the Project Management
Institute:?

“Generally recognized means the knowl-
edge and practices described are applicable to
most projects most of the time, and there is
consensus about their value and usefulness.”

However, the terms generally accepted and
generally recognized do not imply that the desig-
nated knowledge should be uniformly applied
to all software engineering endeavors — each
project’s needs determine what knowledge to
apply, and how. However, competent, capable
software engineers should be equipped with
this knowledge for potential application.
Therefore, appropriate selection of generally
accepted knowledge should be included in the
study material for the software engineering
professional certification and licensing exam-
inations that graduates take after gaining four
years of work experience.

STRUCTURE OF THE KA
DESCRIPTIONS

Each chapter provides a description of one of
the KAs. These descriptions are structured
as follows.

2 A Guide to the Project Management Body of Knowledge, 7th ed., Project Management Institute, 2021, www.pmi.org.
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The introduction briefly defines the KA
and presents an overview of its scope and its
relationship with other KAs.

"The breakdown of topics in each KA consti-
tutes the core of the KA description, showing
the decomposition of the KA into subareas,
topics and subtopics. For each topic or sub-
topic, a short description is given, along with
one or more references.

These reference materials were selected as
the best available presentation of knowledge
related to the topic. A matrix links the topics
to the reference materials.

The last part of each KA description is the
list of recommended references and suggested
further reading. Relevant standards for each
KA are presented in Appendix B of the Guide.

APPENDIX A. KA DESCRIPTION
SPECIFICATIONS

Appendix A describes the specifications
provided by the editorial team to the asso-
ciate editors for the content, recommended
references, format and style of the KA
descriptions.

APPENDIX B.IEEE AND ISO/IEC
STANDARDS

Appendix B presents an annotated list of the
relevant standards, mostly from the IEEE

INTRODUCTION TO THE GUIDE xli

and the ISO, for each of the SWEBOK
Guide’s KAs.

APPENDIX C. CONSOLIDATED
REFERENCE LIST

Appendix C contains the consolidated list of
recommended references cited in the KAs.
These references are marked with an asterisk
(*) in the text.
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CHAPTER 01

Software Requirements

ACRONYMS
ATDD Acceptance Test Driven
Development
BDD Behavior Driven
Development
CIA Confidentiality, Integrity,
and Availability
FSM Functional Size
Measurement
INCOSE International Council on
Systems Engineering
JAD Joint Application
Development
JRP Joint Requirements Planning
SME Subject Matter Expert
SysML Systems Modeling Language
TDD Test Driven Development
UML Unified Modeling Language
INTRODUCTION

Software requirements should be viewed from
two perspectives. The first is as an expres-
sion of the needs and constraints on a soft-
ware product or project that contribute to the
solution of a real-world problem. The second
is that of the activities necessary to develop
and maintain the requirements for a software
product and for the project that constructs
it. Both perspectives are presented in this
knowledge area (KA).

If a team does a poor job of determining the
requirements, the project, the product or both
are likely to suffer from added costs, delays,
cancellations and defects. One reason is that

each software product requirement generally
leads to many design decisions. Each design
decision generally leads to many code-level
decisions. Each decision can involve several
test decisions, as well. In other words, deter-
mining the requirements correctly is high-
stakes work. If not detected and repaired
early, missing, misinterpreted and incorrect
requirements can induce exponentially cas-
cading rework to correct them.

Real-world software projects tend to
suffer from two primary requirements-re-
lated problems:

1. incompleteness: stakeholder require-
ments, and necessary detail, exist that are
not revealed and communicated to the
software engineers;

2. ambiguity: requirements are communi-
cated in a way that is open to multiple
interpretations, with only one possible
interpretation being correct.

Beyond the obvious short-term role
requirements play in initial software con-
struction, they also play a less recognized
but still important role in long-term mainte-
nance. Upon receiving software without any
supporting documentation, a software engi-
neer has several means to determine what that
code does, such as execute it, step through
it with a debugger, hand-execute it, stati-
cally analyze it, and so on. The challenge is
determining what that code is intended to do.
What is generally referred to as a sug — but
is better called a defecs — is simply an observ-
able difference between what the software is
intended to do and what it does. The role of
requirements documentation throughout the
service life of the software is to capture and

1-1
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communicate intent for software engineers
who maintain the code but might not have
been its original authors.

The Software Requirements KA concerns
developing software requirements and man-
aging those requirements over the software’s
service life. This KA provides an under-
standing that software requirements:

* are not necessarily a discrete front-end
activity of the software development life
cycle but rather a process initiated at a
project’s beginning that often continues
to be refined throughout the software’s
entire service life;

* need to be tailored to the organization
and project context.

The term requirements engineering is often
used to denote the systematic handling of
requirements. For consistency, the term engi-
neering will not be used in this KA other than
for software engineering per se.

The Software Requirements KA is most
closely related to the Software Architecture,
Software Design, Software Construction,
Software Testing, and Software Maintenance
KAs, as well as to the models topic in the
Software Engineering Models and Methods
KA, in that there can be high value in speci-
tying requirements in model form.

This KA is also related to the Software
Life Cycles topic in the Software Engineering
Process KA, in that this KA’s focus is on what
and Aow requirements work can and should
be done, whereas the project’s life cycle deter-
mines when that work is done. For example,
in a waterfall life cycle, all requirements work
is essentially done in a discrete Requirements
phase and is expected to be substantially com-
plete before any architecture, design and con-
struction work occurs in subsequent phases.
Under some iterative life cycles, initial, high-
level requirements work is done during an
Inception phase, and further detailing is done
during one or more Elaboration phases. In an
Agile life cycle, requirements work is done
incrementally, just in time, as each additional
element of functionality is constructed.

The whats and hows of software require-
ments work on a project should be determined
by the nature of the software constructed, not
by the life cycle under which it is constructed.
Insofar as requirements documentation cap-
tures and communicates the software’s intent,
downstream maintainers should not be able
to discern the life cycle used in earlier devel-
opment from the form of those require-
ments alone.

This KA is also related, but somewhat less so,
to the Software Configuration Management,
Software Engineering Management and
Software Quality KAs. Software Configuration
Management approaches can be applied to
trace and manage requirements; software
quality looks at how well formed the require-
ments are, and engineering management can
use the status of requirements to evaluate the
completion of the project.

BREAKDOWN OF TOPICS FOR
SOFTWARE REQUIREMENTS

The topic breakdown for the Software
Requirements KA is shown in Figure 1.1.

1. Software Requirements Fundamentals

1.1. Definition of a Software Requirement
[1%, clpp5-6] [2%, c4p102]

Formally, a software requirement has been
defined as [28]:

* a condition or capability needed by a user
to solve a problem or achieve an objective;

* a condition or capability that must be
met or possessed by a system or system
component to satisfy a contract, stan-
dard, specification or other formally
imposed document;

* a documented representation or capa-
bility as in (1) or (2) above.

This formal definition is extended in this
KA to include expressions of a software proj-
ect’s needs and constraints.
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Figure 1.1. Breakdown of Topics for the Software Requirements KA

At its most basic, a software requirement
is a property that must be exhibited to solve a
real-world problem. It might aim to automate
all or part of a task supporting an organiza-
tion’s business policies and processes, correct
existing software’s shortcomings, or control a
device — just a few of the many problems for
which software solutions are possible.

Business policies and processes, as well as
device functions, are often very complex. By
extension, software requirements are often a
complex combination of requirements from
various stakeholders at different organiza-
tional levels who are involved or connected
with some aspect of the environment in which
the software will operate.

Clients, customers and users usually impose
requirements. However, other third parties,
like regulatory authorities and, in some cases,
the software organization or the project itself,
might also impose requirements. (See also [5,
c1] [6, c1] [9, c4].)

1.2. Categories of Software Requirements
[1%, c1pp7-12] [2%, s4.1]

Figure 1.2 shows the categories of software
requirements defined in this KA and the

relationships among those categories. (See
also [5, c1] [6, c1] [9, c4].) Each category is
further described below.

1.3. Software Product Requirements and
Software Project Requirements
[1% c1ppl4-15]

Software product requirements specify the
software’s expected form, fit or function.
Software project requirements — also called
process requirements or, sometimes business
requirements — constrain the project that
constructs the software. Project require-
ments often constrain cost, schedule and/or
staffing but can also constrain other aspects
of a software project, such as testing envi-
ronments, data migration, user training,
and maintenance. Software project require-
ments can be captured in a project charter
or other high-level project initiation doc-
ument. They are most relevant to how
the project is managed (see the Software
Engineering Management KA) or what
life cycle process should be used (see the
Software Engineering Process KA). This
KA does not discuss software project
requirements further.
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Figure 1.2. Categories of Software Requirements

1.4. Functional Requirements

[1%, c1p9] [27,s4.1.1]

Functional requirements specify observable
behaviors that the software is to provide —
policies to be enforced and processes to be
carried out. Example policies in banking soft-
ware might be “an account shall always have
at least one customer as its owner,” and “the
balance of an account shall never be negative.”
Example processes could specify the meanings
of depositing money into an account, with-
drawing money from an account and trans-
ferring money from one account to another.
Even highly technical (nonbusiness-ori-
ented) software, such as software that imple-
ments the transmission control protocol/
internet protocol (T'CP/IP) network com-
munications protocol, has policies and pro-
cesses: “a Port shall be able to exist with zero,
one, or many associated Connections, but a
Connection shall exist on exactly one associ-
ated Port,” “acceptable states of a Connection
shall be ‘listen, ‘syn sent, ‘established,
‘closing,” . . . ,” and “if the time-to-live of a
Segment reaches zero, that Segment shall be
deleted.” (See [5, c1] [6, c10] [9, c4].)

1.5. Nonfunctional Requirements
[1%, c1pp10-11] [2%,s4.1.2]

Nonfunctional requirements in some way con-
strain the technologies to be used in the

implementation: What computing plat-
form(s)? What database engine(s)? How accu-
rate do results need to be? How quickly must
results be presented? How many records of a
certain type need to be stored? Some non-
functional requirements might relate to the
operation of the software. (See the Operation
and Maintenance KA.) (See also [5, c1] [6,
c11] 9, c4].)

The nonfunctional requirements can be
further divided into technology constraints
and quality of service constraints. They have
essential relationships among themselves,
which affect them positively or negatively
and require that, whenever a nonfunctional
requirement is modified, the impact it may
cause on others should be considered.

1.6. Technology Constraints

These requirements mandate — or prohibit —
use of specific, named automation technolo-
gies or defined infrastructures. Examples are
requirements to use specific computing plat-
forms (e.g., Windows™, macOS™, Android
OS™, iOS™), programming languages
(e.g., Java, C++, C#, Python), compatibility
with specific web browsers (e.g., Chrome™,
Safari™, Edge™), given database engines (e.g.,
Oracle™, SQL Server™, MySQL™), and gen-
eral technologies (e.g., reduced instruction set
computer (RISC), Relational Database). A
requirement prohibiting use of pointers would
be another example. (See also [9, c4].)

1.7. Quality of Service Constraints

These requirements do not constrain the use
of specific, named technologies. Instead,
these specify acceptable performance levels an
automated solution must exhibit. Examples
are response time, throughput, accuracy,
reliability and scalability. ISO/IEC 25010:
“System and software engineering — Systems
and software Quality Requirements and
Evaluation (SQuaRE) — System and software
quality models” [27] contains a large list of
the kinds of quality characteristics that can be
relevant for software. (See also [9, c4].) Safety



and security are also a particularly important
topic where requirements tend to be over-
looked. (See the Security KA for details on
the kinds of specific security requirements
that should be considered.) (See also [2*, c13].)

1.8. Why Categorize Requirements This Way?

Categorizing requirements this way is useful
for the following reasons:

* requirements in one category tend to
come from different sources than other
categories;

* elicitation
by source;

* analysis techniques vary by category;

* specification techniques vary by category;

* validation authorities vary by category;

* the different categories aftect the resulting
software in different ways.

techniques  often  vary

In addition, organizing the requirements
in these categories is beneficial in the fol-
lowing ways:

* complexity can be better managed because
different areas can be addressed sepa-
rately; software engineers can deal with
policy and process complexities without
worrying about automation technology
issues at the same time (and vice versa).
One large problem becomes two smaller
ones. This is classic divide and conquer
complexity management;

* distinct areas of expertise can be iso-
lated; stakeholders, not software engi-
neers, are the experts in the policies and
processes to be automated. Software
engineers, not stakeholders, are the
technology experts. When a business
expert is given interspersed functional
and nonfunctional requirements for
review or validation, they might give
up because they don’t understand — or
even care about — the technology issues.
The relevant requirements reviewer can
focus on just the subset of requirements
relevant to them.
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The Perfect Technology Filter originally
described in [18, c1-4] but also explained in
[8] and [9, c4] helps separate functional from
nonfunctional requirements. Simply put,
functional requirements are those that would
still need to be stated even if a computer with
infinite speed, unlimited memory, zero cost,
no failures, etc., existed on which to construct
the software. All other software product
requirements are constraints on automation
technologies and are therefore nonfunctional.

Large systems often span more than one
subject matter area, or domain. As explained
in [9, c6], recursive design shows how non-
functional requirements in a parent domain
can become, or can induce, functional require-
ments in a child domain. For example, a non-
functional requirement about user security
in a parent banking domain can become or
can induce functional requirements in a child
security domain. Similarly, cross-cutting non-
functional requirements about auditing and
transaction management in a parent banking
domain can become or induce functional
requirements in a child auditing domain and a
child transaction domain. Decomposing large
systems into a set of related domains signifi-
cantly reduces complexity.

1.9. System Requirements and Software
Reguirements

The International Council on Systems
Engineering (INCOSE) defines a system as
“an interacting combination of elements to
accomplish a defined objective. These include
hardware, software, firmware, people, infor-
mation, techniques, facilities, services, and
other support elements” [24].

In some cases, it is either useful or manda-
tory to distinguish system requirements from
software requirements. System requirements
apply to larger systems — for example, an
autonomous vehicle. Software requirements
apply only to an element of software in that
larger system. Some software requirements
may be derived from system requirements.
(See also [5, c1].) In other cases, the software is
itself the system of interest, and hardware and
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Figure 1.3. Software Requirements Activities

support system are regarded as the platform
or infrastructure, so that the system require-
ments are mostly software requirements.

1.10. Derived Requirements

In practice, requirements can be context-sensi-
tive and can depend on perspective. An external
stakeholder can impose a scope requirement,
and this would be a requirement for the entire
project — even if that project involves hun-
dreds of software engineers. An architect’s
decision to use a pipes-and-filters architecture
style would not be a requirement from the per-
spective of the overall project stakeholders,
but a design decision. But that same decision,
when seen from the perspective of a sub-team
responsible for constructing a particular filter,
would be considered a requirement.

The aerospace industry has long used the
term derived requirement to mean a require-
ment that was not made by a stakeholder
external to the overall project but that was
imposed inside the larger development team.
The architect’s pipes-and-filters decision fits
this definition. That choice would be seen as
a design decision from the point of view of
external stakeholders, but as a requirement for
the sub-teams responsible for developing each
filter. (See also [9, c4].)

1.11. Software Requirements Activities
[1%, c1pp15-18] [2% s4.2]

Figure 1.3 shows the requirements develop-
ment and management activities.

Requirements development, as a whole,
can be thought of as “reaching an agreement
on what software is to be constructed.” In
contrast, requirements management can be
considered “maintaining that agreement over
time.” Each activity is presented in this KA.
Requirements development activities are pre-
sented as separate topics, with requirements
management presented as a single topic. (See
also [5, c1] [6, 2].)

2. Requirements Elicitation
[1% c6-7] [2%, s4.3]

The goal of requirements elicitation is to sur-
face candidate requirements. It is also called
requirements capture, requirements discovery or
requirements acquisition. As stated earlier, one
problem in requirements work on real-world
software projects is incompleteness. This
can be the result of inadequate elicitation.
Although there is no guarantee that a set of
requirements is complete, well-executed elic-
itation helps minimize incompleteness. (See

also [5, c2-3] [6, ¢3-7].)

2.1. Reguirements Sources

[1% c6] [2%, 54.3]

Requirements come — can be elicited — from
many different sources. All potential require-
ments sources should be identified and eval-
uated. A stakeholder can be defined as any
person, group or organization that:

* is actively involved in the project;
¢ is affected by the project’s outcome;
¢ can influence the project’s outcome.

Typical stakeholders for software projects
include but are not limited to the following:

* clients — those who pay for the software
to be constructed (e.g., organizational
management);

* customers — those who decide whether a
software product will be put into service;

* users — those who interact directly or
indirectly with the software; users can



often be further broken down into dis-
tinct user classes that vary in frequency
of use, tasks performed, skill and knowl-
edge level, privilege level, and so on;

* subject matter experts (SMEs);

* operations staff;

* first-level product support staff;

* relevant professional bodies;

* regulatory agencies;

* special interest groups;

* people who can be negatively affected if
the project is successful;

¢ developers.

Stakeholder classes are groups of stake-
holders that have similar perspectives and
needs. Working on a software project in terms
of stakeholder classes rather than with indi-
vidual stakeholders can produce important,
additional insight.

Many projects benefit from performing
a stakeholder analysis to identify as many
important stakeholder classes as possible. This
reduces the possibility that the requirements
are biased toward better-represented stake-
holders and away from less well-represented
stakeholders. The stakeholder analysis can
also inform negotiation and conflict resolu-
tion when requirements from one stakeholder
class conflict with requirements from another.
(See also [5, ¢3] [6, c3].)

Requirements are not limited to only
coming from people. Other, non-person
requirements sources can include:

* documentation such as requirements for
previous versions, mission statements,
concept of operations;

* other systems;

* larger business context including organi-
zational policies and processes;

* computing environment.

2.2. Common Requirements Elicitation

Techniques [1% ¢7] [2%, s4.3]

A wide variety of techniques can be used to
elicit requirements from stakeholders. Some

SOFTWARE REQUIREMENTS 1-7

techniques work better with certain stake-
holder classes than others. Common stake-
holder elicitation techniques include the
following:

* interviews;

* meetings, possibly including brain-
storming;

* joint application development (JAD)
[13], joint requirements planning (JRP)
[14] and other facilitated workshops;

* protocol analysis;

* focus groups;

* questionnaires and market surveys;

* exploratory  prototyping,  including
low-fidelity and high-fidelity user inter-
face prototyping [1%, c15];

° user story mapping.

Elicitation can be difficult, and the software
engineer needs to know that (for example) users
might have difficulty describing their tasks,
leave important information unstated or be
unwilling or unable to cooperate. Elicitation
is not a passive activity. Even if cooperative
and articulate stakeholders are available, the
software engineer must work hard to elicit
the right information. Many product require-
ments are tacit or can be found only in infor-
mation that has yet to be collected.

Requirements can also be elicited from
sources other than stakeholders. Such sources
and techniques include the following:

* previous versions of the system;

* defect tracking database for previous ver-
sions of the system;

* systems that interface with the system
under development;

* competitive benchmarking;

* literature search;

* quality function deployment (QFD)’s
House of Quality [15];

* observation, where the software engineer
studies the work and the environment
where the work is being done;

* apprenticing, where the software engi-
neer learns by doing the work;

* usage scenario descriptions;
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* decomposition (e.g., capabilities into
epics into features into stories);

* task analysis [16];

* design thinking (empathize,
ideate, prototype, test) [17];

* ISO/IEC 25010: “System and software
engineering — Systems and software
Quality Requirements and Evaluation
(SQuaRE) — System and software quality
models” [27];

* security requirements, as discussed in the
Security KA;

* applicable standards and regulations.

define,

(See also [5, ¢3] [6, c4-7].)
3. Requirements Analysis [1*, ¢8-9]

Requirements are unlikely to be elicited in
their final form. Further investigation is usu-
ally needed to reveal the full, true require-
ments suggested by the originally elicited
information. Requirements analysis helps
software developers understand the meaning
and implications of candidate requirements,
both individually and in the context of the
overall set of requirements.

3.1. Basic Requirements Analysis
[1* ¢8-9]

The following list of desirable properties of
requirements can guide basic requirements
analysis. ‘The software engineer seeks to
establish any of these properties that do not
hold yet. Each requirement should:
* be unambiguous (interpretable in
only one way);

* be testable (quantified), meaning that
compliance or noncompliance can be
clearly demonstrated,;

* be binding, meaning that clients are
willing to pay for it and unwilling not
to have it;

* atomic, represent a single decision

* represent true, actual stakeholder needs;

* use stakeholder vocabulary;

* be acceptable to all stakeholders.

The overall collection of requirements
should be:

* complete — The requirements adequately
address boundary conditions, exception
conditions and security needs;

* concise — No extraneous content in the
requirements

* internally consistent — No requirement
conflicts with any other;

* externally consistent — No requirement
conflicts with any source material;

* feasible — A viable, cost-effective solu-
tion can be created within cost, schedule,
staffing, and other constraints.

In some cases, an elicited statement rep-
resents a solution to be implemented rather
than the true problem to be solved. This
risks implementing a suboptimal solution.
The 5-whys technique (e.g., [3%, c4]) involves
repeatedly asking, “Why is this the require-
ment?” to converge on the true problem.
Repetition stops when the answer is, “If that
isn’t done, then the stakeholder’s problem has
not been solved.” Often, the true problem is
reached in two or three cycles, but the tech-
nique is called 5-whys to incentivize engineers
to push it as far as possible.

3.2. Economics of Quality of Service Constraints
(3*]

Quality of service constraints can be partic-
ularly challenging. This is generally because
engineers do not consider them from an eco-
nomic perspective [9, c4]. Figure 1.4 illus-
trates the economic perspective of a typical
quality of service constraint, such as capacity,
throughput and reliability, where value
increases with performance level. This curve is
mirrored vertically for quality of service con-
straints whose value decreases as performance
level increases (response time and mean time
to repair would be examples).

Over the relevant range of performance
levels, the stakeholders have a corresponding
value if the system performs at that level. The
value curve has two important points:



1. Perfection point — This is the most
favorable level of performance, beyond
which there is no additional benefit. Even
if the system can perform better than the
perfection point, the customer cannot use
that capacity. For example, a social media
system that supports more members than
the world population would have this
excess capacity.

2. Fail point — This is the least favorable
level of performance, beyond which there
is no further reduction in benefit. For
example, the social media system might
need to support at least a minimum
market share to be viable as a platform.

A quantified requirement point, even if
stated explicitly, is usually arbitrary. It is
often based on what a client feels justified
requesting, given what they are paying for
the software. Even if the software engineers
cannot construct a system that fully achieves
the stated requirement point, the software
typically still has value; it just has less value
than the client expected. Further, the ability
to exceed the requirement point can signifi-
cantly increase value in some cases.

The cost to achieve a given performance
level is usually a step function. First, for a
given investment level, there is some max-
imum achievable performance level. Then,
additional investment is needed, and that
further investment enables performance up
to a new, more favorable maximum. Figure
1.5 illustrates the most cost-effective perfor-
mance level — the performance level with
the maximum positive difference between the
value at that performance level and the cost to
achieve it.

(See the Software Engineering Economics
KA or [3*] for more information on per-
forming economic analyses such as this.)

'The software engineer should pay particular
attention to positive and negative relation-
ships between quality of service constraints
(e.g., Figure 14-1 in [1%, c14]). Some quality of
service constraints are mutually supporting;
improving one’s performance level will auto-
matically improve the other’s performance
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level. For example, the more modifiable code
is, the more reliable it tends to be, as both
modifiability and reliability are, to a degree,
a consequence of how clean the code is. On
the other hand, the higher the code’s speed,
the less modifiable it might be, because high
speed is often achieved through optimizations
that make the code more complex.

3.3. Formal Analysis
[2*,512.3.2-12.3.3]

Formal analysis has shown benefits in some
application domains, particularly high-integ-
rity systems (e.g., [5, c6]). The formal expres-
sion of requirements depends on the use of a
specification language with formally defined
semantics. Formality has two benefits. First,
formal requirements are precise and concise,
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which (in principle) will reduce the possibility
for misinterpretation. Second, formal require-
ments can be reasoned over, permitting
desired properties of the specified software to
be proved. This permits static validation that
the software specified by the requirements
does have the properties (e.g., absence of
deadlock) that the customer, users and soft-
ware engineer expect it to have.

This topic is related to Formal Methods
in the Software Engineering Models and
Methods KA.

3.4. Addressing Conflict in Requirements

When a project has more — and more diverse
— stakeholders, conflicts among the require-
ments are more likely. One particularly
important aspect of requirements analysis
is identifying and managing such conflicts
(e.g., [6, c17]). Once conflicting requirements
have been identified, the engineer may con-
sider two different approaches to managing
that conflict (and possibly other approaches
as well) and determine the most appropriate
course of action.

One approach is to negotiate a resolution
among the conflicting stakeholders. In most
cases, it is unwise for the software engineer
to make a unilateral decision, so it becomes
necessary to consult with the stakeholders to
reach a consensus resolution. It is often also
important, for contractual reasons, that such
decisions be traceable back to the customer. A
specific example is project scope management —
namely, balancing what’s desired in the stated
software product requirements with what can
be accomplished given the project require-
ments of cost, schedule, staffing and other
project-level constraints. There are many
useful sources for information on negotiation
and conflict resolution [25].

Another approach is to apply product family
development (e.g., [20]). 'This involves sepa-
rating requirements into two categories. The
first category contains the invariant require-
ments. These are requirements that all stake-
holders agree on. The second category contains
the variant requirements, where conflict exists.

The software engineer can focus on under-
standing the range of variations needed to
satisfy all stakeholders. The software can be
designed using design fo invariants to accom-
modate the invariant requirements and design
for change to incorporate customization points
to configure an instance of the system to best
fit relevant stakeholders. In a simple example,
some users of a weather application require
temperatures displayed in degrees Celsius
while others require degrees Fahrenheit.

4. Requirements Specification
[1%, c10-14, c20-26] [2*, s4.4, ¢5]

Requirements specification concerns recording
the requirements so they can be both remem-
bered and communicated. Requirements
specification might be the most contentious
topic in this KA. Debate centers on ques-
tions such as:
¢ should requirements be  written
down at all?
* if requirements are written down, what
form should they take?
* if requirements are written down, should
they also be maintained over time?

There are no standard answers to these
questions; the answer to each can depend on
factors such as the following:

* the software engineer’s familiarity with
the business domain;

* precedent for this kind of software;

* degree of risk (e.g., probability, severity)
of incorrect requirements;

* staff turnover anticipated during the ser-
vice life of the software;

* geographic distribution of the develop-
ment team members;

* stakeholder involvement over the course
of the project;

* whether the use of a third-party service,
packaged solution or open source library
is anticipated;

* whether any design or construction will
be outsourced;



e the degree of
testing expected,;

* effort needed to use a candidate specifica-
tion technique;

¢ accuracy needed from the
ments-based estimates;

* extent of requirements tracing neces-
sary, if any;

* contractual impositions of requirements
specification content and format.

requirements-based

require-

As stated in this KA’s introduction, the
whats and hows of software requirements
work on a project should be determined by
the nature of the software constructed, not
by the life cycle under which it is constructed.
Downstream maintainers should not be able
to discern the life cycle used in earlier devel-
opment from the form of those requirements
alone. The chosen life cycle’s effect should be
limited to the completeness of the require-
ments at any point in the project. Under a
waterfall life cycle, the requirements are
expected to be completely specified at the end
of the Requirements phase. Under an Agile
life cycle, the requirements are expected to
change, grow, or be eliminated continuously
and not be complete until the project’s end.

Some organizations have a culture of docu-
menting requirements; some do not. Dynamic
startup projects are often driven by a strong
product vision and limited resources; their
teams might view requirements documen-
tation as unnecessary overhead. But as these
products evolve and mature, software engi-
neers often recognize that they need to recover
the requirements that motivated product fea-
tures in order to assess the impact of proposed
changes. Hence, requirements documentation
and change management become important
to long-term success. A project’s approach to
requirements in general, and to requirements
specification in particular, may evolve over
the service life of that software.

The most basic recommendation for
requirements documentation is to base deci-
sions on an audience analysis. Who are the
different consumers who will need informa-
tion from a requirements specification? What
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information will they need? How can that
information be packaged and presented so
that each consumer can get the information
they need with the least effort?

There is a degree of overlap and dependency
between requirements analysis and specifica-
tion. Use of certain requirements specifica-
tion techniques — particularly model-based
requirements specifications — permit and
encourage requirements analysis that can go
beyond what has already been presented.

Documented software requirements should
be subject to the same configuration man-
agement practices as the other deliverables
of the software life cycle processes. (See the
Configuration Management KA for a detailed
discussion.) In addition, when practical, the
individual requirements are also subject to
configuration management and traceability,
which is generally supported by a requirements
management tool. (See Topic 8, Software
Requirements Tools.)

There are several general categories of
requirements specification techniques, each
of which is discussed below. The requirements
specification for a given project may also use
various techniques. ISO/IEC/IEEE 29148
[26], as well as [1%, c10-14], [5, c4], [6, c16],
and many others offer templates for require-
ments documentation.

4.1. Unstructured Natural Language
Requirements Specification
[1% c11] [2% s4.4.1]

Natural language requirements  specifications
express requirements in common, ordinary lan-
guage. Natural language requirements specifi-
cations can be unstructured or structured.

A typical unstructured natural language
requirements specification is a collection of
statements in natural language, such as, “The
system shall . . . .” For example, business rules
are statements that define or constrain some
aspect of the structure or the behavior of the
business to be automated. “A student cannot
register in next semester’s courses if there
remain any unpaid tuition fees” is an example
of a business rule that serves as a requirement
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Use case #66 Use case name: Reserve flight(s)

Triggering event(s) Customer requests reservation(s) on flight(s)
Parameters Passenger, itinerary, fare class, payment method(s)
Requires Legal itinerary, fare class restrictions met
Guarantees Seat(s) reserved for passenger on itinerary flight(s)

Normal course

Non-FF passenger, all domestic itinerary, Economy fare class, credit/debit card

Alternative course(s)

Is FF passenger: [None, Silver, Gold, Platinum, Elite]
Itinerary: [all international, mixed domestic + international]
Fare class: [Basic economy, Premium Economy, Business, First]

Payment method: [Voucher, FF miles]

Exceptions

C/D card declined, voucher doesn’t exist, voucher expired, FF account doesn’t exist,
insufficient miles in FF account

Figure 1.6. Example of Structured Natural Language Specification for a Single Use Case

for a university’s course-registration software.
Some projects can publish a user manual as
a satisfactory requirements specification,
although there are limits to how effective this
can be. (See also [5, c4] [26].)

4.2. Structured Natural Language Requirements
Specification [1% c8] [2%, s4.4.2]
Structured natural language requirements
specifications impose constraints on how the
requirements are expressed; the goal is to
increase precision and conciseness.

The simplest example might be the
actor-action format. The actor is the entity
responsible for carrying out the action, and
action is what needs to happen. A trig-
gering event might precede the actor, and
the action might be followed by an optional
condition or qualification. The statement
“When an order is shipped, the system shall
create an Invoice unless the Order Terms
are ‘Prepaid’” uses actor-action format.
The triggering event is “When an order is
shipped.” The actor is “the system.” The
action is “create an Invoice.” The condition/
qualification is “unless the Order Terms are
‘Prepaid’”

Another example is a use case specifica-
tion template, as shown in Figure 1.6. (See

[11] for guidelines on writing good use case
specifications.)

The user story format, “As a <role> I want
<capability> so that <benefit>” as well as deci-
sion tables are other examples. (See also [5,
c4] [6, c12, c16] [7, c2-5].)

4.3. Acceptance Criteria-Based Requirements
Specification

This general approach includes two specific
variants: acceptance test driven develop-
ment (ATDD) and behavior driven develop-
ment (BDD).

ATDD [2%53.2.3,8.2] isa part of the larger
test driven development (TDD) approach.
(See the Software Testing KA.) The main
idea of TDD is that test cases precede con-
struction. Therefore, no new production code
is written and no existing code is modified
unless at least one test case fails, either at the

unit test level or at the acceptance test level.
The ATDD process has three steps:

1. A unit of functionality (e.g., a user story)
is selected for implementation.

2. One or more software engineers, one or
more business domain experts, and pos-
sibly one or more QA/test professionals
meet — before any production design or



construction work is done — to agree on
a set of test cases that must pass to show
that the unit of functionality has been
correctly implemented.

3. Atleast one of those acceptance test cases
must fail on the existing software. The
existence of at least one failing test case
gives the software engineer(s) permis-
sion to create or modify production code
to pass all of the agreed-upon test cases.
'This step might require several iterations.
The code may also be refactored during
this step.

When all acceptance test cases have passed,
and presumably all unit and integration test
cases as well, then the unit of functionality is
deemed to have been completely and correctly
implemented. The ATDD process returns to
step 1, where a new unit of functionality is
selected, and the cycle repeats.

ATDD might seem to be a testing tech-
nique rather than a requirements specifica-
tion technique. On the other hand, a test case
has the general form of “When given input
that looks like X, we expect the software to
produce results that look like Y.” The key is
the underlined phrase, “we expect the soft-
ware to produce.” If we simply modify that
phrase to say, “the software shall produce,”
as in “When given input that looks like X,
the software shall produce results that look
like Y,” what first looked like a test case now
looks like a requirement. Technically, one
acceptance test case can encompass more
than one single requirement, but the gen-
eral idea holds that the ATDD test cases are
essentially precise, unambiguous statements
of requirements.

The BDD approach [19] is slightly more
structured, and business domain experts typ-
ically prefer it over ATDD because it is less
technical in appearance. In BDD, the unit
of functionality is described as a user story,
in a form such as this: “As a <role> I want
<capability> so that <benefit>.” This leads to
the identification and specification of a set of
“scenarios” in this form: “Given <some con-
text> [and <possibly more context>], when
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<stimulus> then <outcome> [and <possibly
more outcomes>].”

If the story is “As a bank customer, I want
to withdraw cash from the automated teller
machine (ATM) so that I can get money
without going to the bank,” one scenario could
be that “the account has a sufficient balance.”
This scenario could be detailed as “Given the
account balance is $500, and the customer’s
bank card is valid, and the automated teller
machine contains enough money in its cash
box, when the Account Holder requests $100,
then the ATM should dispense $100 and the
account balance should be $400, and the cus-
tomer’s bank card should be returned.”

Another scenario could be that “the
account has an insufficient balance” and
could be detailed as “Given the account bal-
ance is $50, and the customer’s bank card is
valid, and the automated teller machine con-
tains enough money in its cash box, when
the Account Holder requests $100, then the
ATM should not dispense any money, and the
ATM should say there is an insufficient bal-
ance, the balance should remain at $50, and
the customer’s bank card should be returned.”

'The goal of BDD is to have a comprehensive
set of scenarios for each unit of functionality.
In the withdrawing cash situation, additional
scenarios for “The Bank Customer’s bank card
has been disabled” and “The ATM does not
contain enough money in its cash box” would
be necessary.

The acceptance test cases are obvious from
the BDD scenarios.

Acceptance criteria-based requirements
specification directly addresses the require-
ments ambiguity problem. Natural languages
are inherently ambiguous, but test case lan-
guage is not. In acceptance-based criteria
requirements specification, the requirements
are written using test case language, which is
very precise. On the other hand, this does not
inherently solve the incompleteness problem.
However, combining ATDD or BDD with
appropriate functional test coverage cri-
teria, such as Domain Testing, Boundary
Value Analysis and Pairwise Testing (see
the Software Testing KA), can reduce the
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likelihood of requirements incompleteness.
(See also [9, c1, c12].)

4.4. Model-Based Requirements Specification
[1% c12] [2* c5] [47]

Another approach to avoiding the inherent
ambiguity of natural languages is to use mod-
eling languages such as selected elements of
the unified modeling language™ (UML) or
systems modeling language™ (SysML). Much
like the blueprints used in building construc-
tion, these modeling languages can be used
in a computing technology-free manner to
precisely and concisely specify functional
requirements [9, c¢1-2]. This topic is closely
related to the Software Engineering Models
and Methods KA. Requirements models fall
into two general categories:

1. Structural models for specifying poli-
cies to be enforced: These are logical class
models as described in, for example, [9,
c8]. They are also called conceptual data
models, logical data models and enti-
ty-relationship diagrams.

2. Behavioral models for specifying pro-
cesses to be carried out: These models
include use case modeling as described in
[9, 7], interaction diagrams as described
in [9, ¢9] and state modeling as described
in [9, c10]. Other examples are UML
activity diagrams and data-flow mod-
eling, as described in [1% ¢12-13], [8],
[10] and [18].

Model-based  requirements  specifica-
tions vary in the degree of model formality.
Consider the following:

1. Agile modeling (see, for example, [10])
is the least formal. Agile models can be
little more than rough sketches whose
goal is to communicate important infor-
mation rather than demonstrate proper
use of modeling notations. In this type
of modeling, the effect of the communi-
cation is considered more important than
the form of the communication.

2. Semiformal modeling, for example [9,
c6-12], provides a definition of the mod-
eling language semantics ([9, Appendix
L]), but that definition has not been
formally proved to be complete and
consistent.

3. Formal modeling, for example, Z, the
Vienna development method (VDM),
specification and description language
(SDL) and [5, ¢7] have very precisely
defined semantics that allow specifica-
tions to be mechanically analyzed for the
presence or absence of specific properties
to help avoid critical reasoning errors.
The term correctness by construction has
been used for development in this con-
text. (See the Formal Methods section in
the Software Engineering Models and
Methods KA.)

Generally, the more formal a requirements
model is, the less ambiguous it is, so soft-
ware engineers are less likely to misinterpret
the requirements. More formal requirements
models can also be:

* more concise and compact;

* easier to translate into code, possibly
mechanically;

* used as a basis for deriving acceptance
test cases.

One important message in [4*] is that while
formal modeling languages are stronger than
semiformal and Agile modeling, formal nota-
tions can burden both the model creator and
human readers. Wing’s compromise is to use
formally defined underpinnings (e.g., in Z)
for surface syntaxes that are easier to read and
write (e.g., UML statecharts).

4.5. Additional Attributes of Requirements
[1%, c27pp462-463]

Over and above the basic requirements
statements already described, documenting
additional attributes for some or all require-
ments can be useful. This supplemental
detail can help software engineers better



interpret and manage the requirements [6,
c16]. Possible additional attributes include
the following:

* tag to support requirements tracing;

* description (additional details about the
requirement);

* rationale (why the
important);

* source (role or name of the stakeholder
who imposed this requirement);

* use case or relevant triggering event;

* type (classification or category of the
requirement — e.g., functional, quality
of service);

¢ dependencies;

* conflicts;

* acceptance criteria;

* priority (see Requirements Prioritization
later in this KA);

* stability (see Requirements Stability and
Volatility later in this KA);

* whether the requirement is common or a
variant for product family development
(e.g [20]);

* supporting materials;

* the requirement’s change history.

requirement is

Gilb’s Planguage (short for Planning
Language) [7] recommends attributes such as
scale, meter, minimum, target, outstanding,
past, trend and record.

4.6. Incremental and Compre/)ensiwe
Reguirements S]Jeci cation

Projects that explicitly document require-
ments take one of two approaches. One can
be called incremental specification. In this
approach, a version of the requirements speci-
fication contains only the differences — addi-
tions, modifications and deletions — from
the previous version. An advantage of this
approach is that it can produce a smaller
volume of written specifications.

The other approach can be called compre-
hensive specification. In this approach, each
version’s requirements specification con-
tains all requirements, not just changes from
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the previous version. An advantage of this
approach is that a reader can understand all
requirements in a single document instead of
having to keep track of cumulative additions,
modifications and deletions across a series of
specifications.

Some organizations combine these two
approaches, producing intermediate releases
(e.g., x.1, x.2 and x.3) that are specified incre-
mentally and major releases (e.g., 1.0, 2.0 and
3.0) that are specified comprehensively. The
reader never needs to go any further back
than the requirements specifications for the
last major release to obtain the complete set
of specifications.

5. Requirements Validation
[1* ¢c17] [27, s4.5]

Requirements wvalidation concerns gaining
confidence that the requirements represent
the stakeholders’ true needs as they are cur-
rently understood (and possibly documented).
Key questions include the following:

* do these represent all requirements rele-
vant at this time?

* are any stated requirements not represen-
tative of stakeholder needs?

* are these requirements
stated?

* are the requirements understandable,
consistent and complete?

* does the requirements documentation
conform to relevant standards?

appropriately

Three methods for requirements validation
tend to be used: requirements reviews, sim-
ulation and execution, and prototyping. (See
also [5, ¢5] [6, c17] [9, c12].)

5.1. Requirements Reviews

[1%, c17pp332-342] [2*, c4p130]

The most common way to validate is by
reviewing or inspecting a requirements docu-
ment. One or more reviewers are asked to look
for errors, omissions, invalid assumptions,
lack of clarity and deviation from accepted
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practice. Review from multiple perspectives
is preferred:

* clients, customers and users check that
their wants and needs are completely and
accurately represented;

* other software engineers with expertise
in requirements specification check that
the document is clear and conforms to
applicable standards;

* software engineers who will do architec-
ture, design or construction of the soft-
ware that satisfies these requirements
check that the document is sufficient to
support their work.

Providing checklists, quality criteria or
a “definition of done” to the reviewers can
guide them to focus on specific aspects of the
requirements specification. (See Reviews and
Audits in the Software Quality KA.)

5.2. Simulation and Execution

Nontechnical stakeholders might not want to
spend time reviewing a specification in detail.
Some specifications can be subjected to sim-
ulation or actual execution in place of or in
addition to human review. To the extent that
the requirements are formally specified (e.g.,
in a model-based specification), software
engineers can hand interpret that specifica-
tion and “execute” the specification. Given
a sufficient set of demonstration scenarios,
stakeholders can be convinced that the spec-
ification defines their policies and processes
completely and accurately. (See [9, ¢12].)

5.3. Prototyping
[1%, c17p342] [2% c4p130]

If the requirements specification is not in
a form that allows direct simulation or exe-
cution, an alternative is to have a software
engineer build a prototype that concretely
demonstrates some important dimension of
an implementation. This demonstrates the
software engineer’s interpretation of those
requirements.

Prototypes can help expose software engi-
neers’ assumptions and, where needed, give
useful feedback on why they are wrong. For
example, a user interface’s dynamic behavior
might be better understood through an ani-
mated prototype than through textual
description or graphical models. However, a
danger of prototyping is that cosmetic issues
or quality problems with the prototype can
distract the reviewers’ attention from the core
underlying functionality. Prototypes can also
be costly to develop. However, if a prototype
helps engineers avoid the waste caused by
trying to satisfy erroneous requirements, its
cost can be more easily justified.

6. Requirements Management Activities
[1%, c27-28] [2%, s4.6]

Requirements development, as a whole, can be
thought of as “reaching an agreement on what
software is to be constructed.” (See Figure
1.3.) In contrast, requirements management
can be thought of as “maintaining that agree-
ment over time.” This topic examines require-
ments management. (See also [5, ¢9].)

6.1. Requirements Scrubbing

The goal of requirements scrubbing [22, c14,
¢32] is to find the smallest set of simply stated
requirements that will meet stakeholder needs.
Doing so will reduce the size and complexity of
the solution, thus minimizing the effort, cost
and schedule to deliver it. Requirements scrub-
bing involves eliminating requirements that:

* are out of scope;

* would not yield an adequate return on
investment;

* are not that important.

Another important part of the process
is to simplify unnecessarily complicated
requirements.

In waterfall and other plan-based life
cycles, requirements scrubbing can be coor-
dinated with requirements reviews for valida-
tion; scrubbing should occur just before the



validation review. In Agile life cycles, scrub-
bing happens implicitly in iteration planning;
only the highest-priority requirements are
brought into a sprint (iteration).

6.2. Requirements Change Control
[1%, c28] [2* s4.6]

Change control is central to managing
requirements. This topic is closely linked to the
Software Configuration Management KA.
Projects using waterfall or other plan-based
life cycles should have an explicit require-
ments change control process that includes:

* a means to request changes to previously
agreed-upon requirements;

* an optional impact analysis stage to more
thoroughly examine benefits and costs of
a requested change;

* a responsible person or group who
decides to accept, reject, or defer each
requested change;

* ameans to notify all affected stakeholders
of that decision;

* a means to track accepted changes
to closure.

All stakeholders must understand and agree
that accepting a change means accepting its
impact on schedule, resources and/or com-
mensurate change in scope elsewhere in the
project. Ideally the change in scope should be
objectively quantifiable, i.e., in terms of func-
tional size units.

In contrast, requirements change manage-
ment happens implicitly in Agile life cycles.
In these life cycles, any request to change pre-
viously agreed-upon requirements becomes
just another item on the product backlog. A
request will only become “accepted” when it
is prioritized highly enough to make it into an
iteration (a sprint). (See also [5, ¢9] [22, c17].)

6.3. Scope Matching
Scope matching [22, cl14] involves ensuring

that the scope of requirements to architect,
design and construct does not exceed any
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cost, schedule or staffing constraints on the
project. When requirements scope exceeds
the cost, schedule or staffing constraints,
then either that scope must be reduced (pre-
sumably by removing a sufficient number of
the lowest-priority requirements), capacity
must be increased (by extending the schedule
or increasing the budget and/or staffing), or
some appropriate combination thereof must be
negotiated. Where possible, scope matching
should be quantitative instead of qualitative,
i.e., in terms of functional size units.
Inwaterfall and other plan-based life cycles,
scope matching can be coordinated with
requirements validation; the scope matching
should occur just before the validation review.
In Agile life cycles, as long as some variant of
velocity-based sprint planning is done, then the
only work allowed into a sprint/iteration will
be the work that can reasonably be expected
to be completed during that sprint/iteration.

7. Practical Considerations

7.1. Iterative Nature of the Requirements

Process [2*%, s4.2]
Requirements for typical software not only
have wide breadth; they must also have
significant depth. The tension created by
simultaneous breadth-wise and depth-wise
requirements in real-world projects often
prompts teams to perform requirements activ-
ities iteratively. At some points, elicitation
and analysis favor expanding the breadth of
requirements knowledge, while at other points,
expanding the depth is called for. In practice,
it is highly unlikely that all requirements work
can be done in a single pass through the sub-
ject matter. (See also [6, ¢2, ¢9].)
7.2. Requirements Prioritization [1* c16]
Prioritizing requirements is useful throughout
a software project because it helps focus soft-
ware engineers on delivering the most valuable
functionality soonest. It also helps support
intelligent trade-off decisions involving con-
flict resolution and scope matching. Prioritized
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requirements also help in maintenance beyond
the initial development project itself. Defects
raised against higher-priority requirements
should probably be repaired before defects
raised against lower-priority ones.

A variety of prioritization schemes are
available. Answering a few key questions can
help engineers choose the best approach. The
first question is “What factors are relevant in
determining the priority of one requirement
over another?” The following factors might be
relevant to a project:

* value; desirability; client, customer and
user satisfaction;

* undesirability; client, customer and user
dissatisfaction (Kano model, below);

* cost to deliver;

* cost to maintain over the software’s ser-
vice life;

* technical risk of implementation;

* risk that users will not use it even if
implemented.

The Kano model, which underlies [6, c17],
shows that considering only value, desir-
ability or satisfaction can lead to erroneous
priorities. A better understanding of priorities
comes from considering how unhappy stake-
holders would be if that requirement were
not satisfied. For example, consider a project
to develop an email client. Two candidate
requirements might relate to:

1. Having an effective spam filter
2. Handling attachments on emails

Prioritization must weigh both the satis-
faction users will experience from having cer-
tain features and the dissatisfaction they will
experience if they lack certain features. For
example, users are more likely to be happy
with an effective spam filter than with the
ability to handle attachments, so the spam
filter would be given a higher priority based
on the satisfaction criterion. On the other
hand, the inability to handle attachments
would make many users extremely unhappy
— much more so than not having an effective

spam filter. When considering happiness,
or satisfaction, from implementing features
combined with unhappiness (or dissatisfac-
tion) from not implementing certain features,
developers would generally give handling
attachments a higher priority than the effec-
tive spam filter.

The second key question is “How can we
convert the set of relevant factors into an
expression of priority?” The formula

Value » (1-Risk)
Cost

is just one example of an objective function to
do so. The choice of measurement schemes for
the relevant factors can impose constraints
on the objective function. (See Measurement
Theory in Computing Foundations).

Once the priority of the requirements has
been determined, those priorities must be
specified in a way that can be communicated
to all stakeholders. Several ways to do this are
possible, including the following:

Priority =

* enumerated scale (e.g., must have, should
have, nice to have);

* numerical scale (e.g., 1 to 10);

* Lists that sort the requirements in
decreasing priority order.

Effective requirement prioritization focuses
on finding groups of requirements with sim-
ilar priorities rather than creating overly rig-
orous measurement scales or debating small
differences.

7.3. Requirements Tracing [1* c29]
Requirements tracing can serve two poten-
tially useful purposes. One is to serve as an
accounting exercise that documents consis-
tency between pairs of related project work
products. An important question might be
“For each identified software requirement,
are there identified design elements intended
to satisfy it?” If no identified design elements
can be found, then either that requirement
is not satisfied in that design or the design is
correct and one or more stated requirements



can be deleted. Similarly, “For each identified
design element, are there identified require-
ments that cause it to exist?” If no identified
requirements can be found, then either that
design element is unnecessary or the stated
requirements are incomplete.

The other purpose is to assist in impact
analysis of a proposed requirement change.
If a particular system requirement were to
change, for example, that system requirement
could be traced to its linked software require-
ments. Not all linked software requirements
would need to change. But each software
requirement that would be aftected could be
traced to its linked design elements. Again,
not all linked design elements would need
to change. But each design element affected
could be traced to the linked code. The
affected software requirements, design ele-
ments and code units could also be traced to
their linked test cases for further impact anal-
ysis. This helps establish a “footprint” for the
volume of work needed to incorporate that
change to the system requirement.

Software requirements can be traced back
to source documentation such as system
requirements, standards documents and other
relevant specifications. Software requirements
can also be traced forward to design elements
and requirements-based test cases. Finally,
software requirements can also be traced for-
ward to sections in a user manual describing
the implemented functionality. (See also [23].)

7.4. Requirements Stability and Volatility
[2* s4.6]

Some requirements are very stable; they will
probably never change over the software’s ser-
vice life. Some requirements are less stable;
they might change over the service life but
might not change during the development
project. For example, in a banking applica-
tion, requirements for functions to calculate
and credit interest to customers’ accounts
are likely to be more stable than require-
ments to support different tax-free accounts.
The former reflects a banking domain’s fun-
damental feature (that accounts can earn
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interest). At the same time, the latter may
be rendered obsolete by a change in govern-
ment legislation. Finally, some requirements
can be very unstable; they can change during
the project — possibly more than once. It is
useful to assess the likelihood that a require-
ment will change in a given time. Identifying
potentially volatile requirements helps the
software engineer establish a design more tol-
erant of change, (e.g., [20]). (See also [9, c4].)

7.5. Measuring Requirements
[1* ¢c19]

As a practical matter, it may be useful to have
some concept of the volume of the require-
ments for a particular software product.
This number is useful in evaluating the size
of a new development project or the size of
a change in requirements and in estimating
the cost of development or maintenance tasks
(e.g., [9, c23]), or simply for use as the denom-
inator in other measurements. Functional size
measurement (FSM) is a technique for evalu-
ating the size of a body of functional require-
ments. Story points can also be considered a
measure of requirements size.

Additional information on size measure-
ment and standards can be found in the
Software Engineering Process KA.

Many quality indicators have been devel-
oped that can be used to relate the quality of
software requirements specification to other
project variables such as cost, acceptance,
performance, schedule and reproducibility.
Quality indicators for individual software
requirements and a requirements specifica-
tion document as a whole can be derived from
the desirable properties discussed in Section
3.1, Basic Requirements Analysis, earlier
in this KA.

7.6. Requirements Process Quality and

Improvement [1* ¢31]
This topic concerns assessing the quality and
improvement of the requirements process. Its
purpose is to emphasize the key role of the
requirements process in a software product’s
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cost and timeliness and in customer satisfac-
tion. Furthermore, it helps align the require-
ments process with quality standards and
process improvement models for software and
systems. Process quality and improvement are
closely related to both the Software Quality
KA and Software Engineering Process KA,
comprising the following:

* requirements process coverage by process
improvement standards and models;

* requirements process measures and
benchmarking;

* improvement planning and
implementation;

* security/CIA (confidentiality, integrity,
and availability) improvement/planning
and implementation.

8. Software Requirements Tools [1%, ¢30]

Tools that help software engineers deal with
software requirements fall broadly into three
categories: requirements management tools,
requirements modeling tools and functional
test case generation tools, as discussed below.

8.1. Requirements Management Tools
[1%, c30pp506-510]

Requirements management tools support var-
ious activities, including storing requirements
attributes, tracing, document generation and
change control. Indeed, tracing and change
control might only be practical when sup-
ported by a tool. Because requirements man-
agement is fundamental to good requirements
practice, many organizations have invested
in tools. However, many more manage their
requirements in more ad hoc and generally
less satisfactory ways (e.g., spreadsheets). (See
also [5, c8].)

8.2. Requirements Modeling Tools
[1%, c30p506] [2%,512.3.3]

At a minimum, a requirements modeling tool
supports visually creating, modifying and
publishing model-based requirements speci-
fications. Some tools extend that by also pro-
viding static analysis (e.g., syntax correctness,
completeness and consistency). Formal anal-
ysis requires tool support to be practicable for
anything other than trivial systems, and tools
generally fall into two categories: theorem
provers or model checkers. In neither case
can proof be fully automated, and the com-
petence in formal reasoning needed to use the
tools restricts the wider formal analysis. Some
tools also dynamically execute a specification
(simulation).

8.3. Functional Test Case Generation Tools

The more formally defined a requirements
specification language is, the more likely it
is that functional test cases can be at least
partially derived mechanically. For example,
converting BDD scenarios into test cases is
not difficult. Another example involves state
models. Positive test cases can be derived
for each defined transition in that kind of
model. Negative test cases can be derived
from the state and event combinations that
do not appear. (See Section 8.2, Testing
Tools in the Testing KA, for more informa-
tion.) A process for deriving test cases from
UML requirements models can be found
in [9, c12].

In the most general case, such tools can
only generate test case inputs. Determining
an expected result is not always possible,
additional business domain expertise might
be necessary.
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6. Requirements Management Activities

6.1. Requirements Scrubbing

6.2. Requirements Change Control c28 s4.6
6.3. Scope Matching

7. Practical Considerations

7.1. Iterative Nature of the Requirements Process s4.2
7.2. Requirements Prioritization cl6

7.3. Requirements Tracing c29

7.4. Requirements Stability and Volatility s4.6
7.5. Measuring Requirements c19

7.6. Requirements Process Quality and c31

Improvement

8. Software Requirements Tools

8.1. Requirements Management Tools c30pp506-510

8.2. Requirements Modeling Tools c30p506 s12.3.3
8.3. Functional Test Case Generation Tools

FURTHER READINGS

IIBA, A Guide to the Business Analysis Body of
Knowledge® (BABOK® Guide) v3 [30]

The BABOK Guide is the reference body
of knowledge for the Business Analysis
community and provides a comprehen-
sive description of that discipline. While
broader than just requirements and just
for software, a very large portion of the
BABOK Guide content is relevant to soft-
ware requirements.

P. LaPlante, Requirements Engineering for
Software and Systems [5].

This book is one potential alternative to [17],
offering a comprehensive discussion of soft-
ware requirements.

S. Robertson and J. Robertson, Mastering the
Requirements Process: Getting Requirements

Right [6].

'This book is another potential alternative to

[17], offering a comprehensive discussion of
software requirements.

T. Gilb, Competitive Engineering: A Handbook

Jor
Engineering, and Software Engineering Using

Systems Engineering,

Requirements
Planguage [7].

This book presents a unique perspective on
requirements, emphasizing requirements pre-
cision and completeness along with a strong
business value-driven motivation.

K. Wiegers, Software Development Pearls: Lessons
Jfrom Fifty Years of Software Experience [21].

This book is a compendium of important
but often unrecognized key success factors
based on Dr. Wiegers’ extensive real-world
experience. Chapter 2 is specific to software
requirements.

R. Fisher and W. Ury, Gerting to Yes [25].

This book is a classic reference on principled
negotiation and conflict resolution that serves



as one good basis for addressing inevitable
conflict in software requirements when there
are multiple stakeholders.

N. Ahmad, Effects of Electronic Communication
on the Elicitation of Tacit Knowledge in
Interview Techniques for Small ~ Software
Developments [29].

This doctoral thesis shows how using four
different types of electronic communication
tools to discuss interview agenda details with
interviewees before conducting semi-struc-
tured interviews for requirements elicita-
tion improved elicitation of tacit (hidden)
knowledge.
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CHAPTER 02

Software Architecture

ACRONYMS
AD Architecture Description
ADL | Architecture Description Language
API Application Programming Interface
ASR | Architecturally Significant
Requirement
ATAM | Architectural Tradeoff Analysis
Method
IDL Interface Description Language
MVC | Model View Controller
QAW | Quality Attribute Workshop
RA Reference Architecture
REST | Representational State Transfer
SAAM | Software Architecture Analysis
Method
UML | Unified Modeling Language
INTRODUCTION

This chapter considers software architecture
from several perspectives: concepts; repre-
sentation and work products; context, process
and methods; and analysis and evaluation.

In contrast to the previous edition, this edi-
tion creates a software architecture knowledge
area (KA), separate from the Software Design
KA, because of the significant interest and
growth of the discipline since the 1990s.

BREAKDOWN OFTOPICS FOR
SOFTWARE ARCHITECTURE

The breakdown of topics for the Software
Architecture KA is shown in Figure 2.1.

1. Software Architecture Fundamentals
[2%,c1][29%, appendix C] [38%, c2] [41%, c1-3]

1.1. The Senses of Architecture” [2* c2]
[6* ¢c6.1] [29% c6]

Software engineering and related disciplines
use many senses of “architecture.” First,
“architecture” often refers to a discipline: the
art and science of constructing things — in
this case, software-intensive systems. The dis-
cipline involves concepts, principles, processes
and methods the community has discovered
and adopted.

Second, “architecture” refers to the various
processes through which that discipline is
realized. Software architecture is also consid-
ered part of Software Design; generally con-
sidered a multistage process, divided into the
following stages:

* Architectural design stage
* High-level design stage
* Detailed design stage

Software design is the focus of Chapter 3.
This chapter focuses on architecting and archi-
tectural design.

Third, “architecture” refers to the ouz-
come of applying architectural design disci-
pline and processes to devise architectures
for software systems. Architectures as out-
comes are expressed in architecture descriptions.
This is discussed in topic Soffware Architecture
Description. The concept of architecture has
evolved, and many definitions are in use today.
One early definition of architecture, from
1990, emphasized software structure:

Architecture. The organizational struc-
ture of a system or component. [from: IEEE

2-1
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Figure 2.1. Breakdown of Topics for the Software Architecture KA

Std 610.12-1990, IEEE Glossary of Software
Engineering Terminology)

'This definition did not do justice to evolving
thinking about architecture; e.g., this definition
does not allow us to distinguish the detailed
design of a module from its Makefile. Either
example reflects an organizational structure of
the software system or component but should
not be considered architecture. Moreover,
emphasis on the structure was often limited to
the code’s structure and failed to encompass all
the structures of the software system:

The software architecture of a system is the
set of structures needed to reason about the
system. These structures com])rise software ele-
ments, relations among them, and properties

of both. [27]

During the mid-1990s, however, software
architecture emerged as a broader discipline
involving a more generic study of software
structures and architectures. Many software
system structures are not directly reflected
in the code structure. Both types of struc-
ture have implications for the system as a
whole: What behaviors is the system capable

of? What interactions does it have with other
systems? How are properties like safety and
security handled? The recognition that soft-
ware contains many different structures has
prompted discussion of a number of inter-
esting concepts about software architecture
(and software design more generally) leading
to current definitions such as:

architecture (of a system). fundamental con-
cepts or properties of a system in its environ-
ment embodied in its elements, relationships,
and in the principles of its design and evo-
lution [23]

Key ideas in that definition are the fol-
lowing: (1) Architecture is about what is
fundamental to a software system; not every
element, interconnection, or interface is con-
sidered fundamental. (2) Architecture con-
siders a system in its environment. Much like
building architecture, software architec-
ture is outward-looking; it considers a sys-
tem’s context beyond its boundaries including
the people, organizations, software, hard-
ware and other devices with which the system
must interact.



1.2. Stakeholders and Concerns
[2*, c3-14] [38* c8-9] [41%, c3]

A software system has many stakeholders with
varying roles and interests relative to that
system. These varying interests are termed con-
cerns, following Dijkstra’s separation of concerns:

Let me try to explain to you, what to my taste
is characteristic for all intelligent thinking.
1t is, that one is willing to study in depth an
aspect of one’s subject matter in isolation for
the sake of its own consistency, all the time
knowing that one is occupying oneself only
with one of the aspects. We know that a pro-
gram must be correct and we can study it from
that viewpoint only; we also know that it
should be efficient and we can study its effi-
ciency on another day, so to speak. In another
mood we may ask ourselves whether, and if so:
why, the program is desirable. But nothing is
gained — on the contrary! — by tackling these
various aspects simultaneously. It is what 1
sometimes have called “the separation of con-
cerns’, which, even if not perfectly possible, is
yet the only available technique for effective
ordering of one’s thoughts, that I know of. This
is what I mean by “[focusing] one’s attention
upon some aspecf”: it does not mean ignoring
the other aspects, it is just doing justice to the
Jact that from this aspect’s point of view, the
other is irrelevant. It is being one- and multi-

Pple~track-minded simultaneously. [12]

What is fundamental about a system varies
according to stakeholders’ concerns and roles.
The software structures, therefore, also vary
with stakeholder roles and concerns. (See also
topic Design Methods in Software Design KA..)

A software system’s customer is most inter-
ested in when the system will be ready and
how much it will cost to build and operate.
Users are most interested in what it does and
how to use it. Designers and programmers
building the system have their own concerns,
such as whether an algorithm will meet the
system requirements. Those responsible for
ensuring the system is safe to operate have dif-
ferent concerns.
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affordability, agility, assurance, autonomy,
availability, behavior, business goals and
strategies, complexity, compliance with regu-
lation, concurrency, control, cost, data acces-
sibility, deployability, disposability, energy
efficiency, evolvability, extensibility, feasi-
bility, flexibility, functionality, information
assurance, inter-process communication,
interoperability, known limitations, main-
tainability, modifiability, modularity, open-
ness, performance, privacy, quality of service,
reliability, resource utilization, reusability,
safety, scalability, schedule, security, system
modes, software structure, subsystem inte-
gration, sustainability, system features, test-

ability, usability, usage, user experience

Figure 2.2. Examples of Architectural Concerns

Concerns encompass a broad range of
issues, possibly pertaining to any influence on
a system in its environment, including devel-
opmental, technological, business, opera-
tional, organizational, political, economic,
legal, regulatory, ecological and social influ-
ences. Like software requirements, they may
be classified as functional, non-functional
or constraint. (See Software Requirements
KA.) Concerns manifest in various familiar
forms, including requirements, quality attri-
butes or “ilities”, emergent properties (which
may be either desired or prohibited) and var-
ious kinds of constraints (as listed above).
See Software Quality KA. Topic 2, Software
Architecture Description, shows how concerns
shape architecture and the work products
describing those architectures. Examples
of concerns are depicted in Figure 2.2.
Concerns are not static; concerns evolve over
the life cycle of a system and as technolo-
gies, policies and other influences evolve.
For example, due to increased awareness of
climate change, there is growing interest in
concerns such as energy efliciency, and sus-
tainability [24].
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1.3. Uses of Architecture
[2*, c24] [38*, c30]

A principal use of a software system’s archi-
tecture is to give those working with it a
shared understanding of the system to guide
its design and construction. An architec-
ture also serves as a preliminary conception
of the software system that provides a basis
to analyze and evaluate alternatives. A third
common usage is to enable reverse engi-
neering (or reverse architecting) by helping
those working with it to understand an
existing software system before undertaking
maintenance, enhancement or modification.
To support these uses, the architecture should
be documented (see topic Software Architecture
Description).

Conway’s Law posits that “organizations
which design systems ... are constrained to
produce designs which are copies of the com-
munication structures of these organizations”
[11]. Empirical studies have observed that the
architectures of these systems often mirror the
communications structures of those organiza-
tions [28]. Depending on the software system
and the organization, this can be a strength
or a weakness. The architecture can enhance
communication within a large team or com-
promise it. Each part of the organization can
base its planning, costing and scheduling
activities upon its knowledge of the architec-
ture. Creating a well-planned and documented
architecture is one approach to increasing
the applicability and reusability of software
designs and components. The architecture
forms the basis for design families of programs
or software product lines. This can be done by
identifying commonalities among members of
such families and by designing reusable and
customizable components to account for the
variability among family members.

2. Software Architecture Description
[2*, 1.2, 22] [38*, c12-13] [40°, c6]
[41% c6-7]

In topic 1, Software Architecture Fundamentals,
a software architecture was defined as the

fundamental concepts or properties of a soft-
ware system in its environment. But each
stakeholder can have a different notion of
what is fundamental to that software system,
given their perspective. Having a mental
model of a system’s architecture is perhaps
fine for small systems and for individuals
working alone. However, for large, complex
systems developed and operated by teams, a
tangible representation is invaluable, espe-
cially as the conception of the system evolves,
and as people join or leave the team. Having a
concrete representation as a work product can
also serve as a basis to analyze the architec-
ture, organize its design and guide its imple-
mentation. These work products are called
architecture descriptions (ADs).

ADs document an architecture for a soft-
ware system. It is targeted to those stake-
holders of the system who have concerns about
the software system which are answered by
the architecture. As noted in topic 1, Soffware
Architecture Fundamentals, a primary audi-
ence comprises the designers, engineers and
programmers whose concerns pertain to con-
structing the system. For these stakeholders,
ADs serve as a blueprint to guide the construc-
tion of the software system. For others, the
AD is a basis for their work — for example,
testing and quality assurance, certification,
deployment, operation, and maintenance and
future evolution.

Historically, ADs used text and informal
diagrams to convey the architecture.
However, the diversity of stakeholder audi-
ences and their different concerns have led to
a diversity of representations of the architec-
ture. Notations should be chosen based on the
need, purpose and the utility of those choices
(such as understandability, familiarity) for
the stakeholders who need that information.
Often, these representations are specialized
based upon existing practices of the com-
munities or disciplines involved to effectively
address this variety of stakeholders and con-
cerns (see Software Design KA and Software
Engineering Models and Methods KA).
These various representations are called archi-
tecture views.



2.1. Architecture Views and Viewpoints
[6%,¢7-9] [29%, c8] [38*, 3] [40*, c6.2]

An architecture view represents one or more
aspects of an architecture to address one or
more concerns [38%]. Views address distinct
concerns — for example, a logical view (depicts
how the system will satisfy the functional
requirements); a process view (depicts how the
system will use concurrency); a physical view
(depicts how the system is to be deployed and
distributed) and a development view (depicts
how the top-level design is broken down
into implementation units, the dependencies
among those units and how the implementa-
tion is to be constructed). Separating concerns
by view allows interested stakeholders to focus
on a few things at a time and offers a means of
managing the architecture’s understandability
and overall complexity.

Architecture practice has evolved from the
use of text and informal diagrams to the use
of more rigorous representations. Each archi-
tecture view depicts architectural elements of
the system using well-defined conventions,
notations and models [38*]. The conventions
for each view are documented as an architec-
ture viewpoint [23]. Viewpoints guide the cre-
ation, interpretation and uses of architecture
views. Each viewpoint links stakeholder audi-
ence concerns with a set of conventions. In
model-based architecting, each view can be
machine-checked against its viewpoint.

Common viewpoints include the module
viewpoint, used to express a software system’s
implementation in terms of its modules and
their organization [2*]; the component and
connector viewpoint, used to express the soft-
ware’s large-scale runtime organization and
interactions [2¥]; the logical viewpoint, used
to express fundamental concepts of the soft-
ware’s domain and capability [25]; the sce-
narios/use cases viewpoint, used to express
how users interact with the system [25]; the
information viewpoint, used to express a sys-
tem’s key information elements and how they
are accessed and stored [38*]; and the deploy-
ment viewpoint, used to express how a system
is configured and deployed for operation [38*].
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Other documented viewpoints include view-
points for availability, behavior, communi-
cations, exception handling, performance,
reliability, safety and security.

Each viewpoint provides a vocabulary or
language for talking about a set of concerns
and the mechanisms for addressing them.
The viewpoint language gives stakeholders
a shared means of expression. Viewpoints
need not be limited to one software system
but are reusable by an organization or appli-
cation community for many similar systems.
When generic representations such as Unified
Modeling Language (UML) are used, they
can be specialized to the system, its domain
or the organizations involved. (See section
2.3 Architecture Description Languages and
Architecture Frameworks.)

Beyond specifying forms of representation,
an architecture viewpoint can capture the
ways of working within a discipline or com-
munity of practice. For example, a software
reliability viewpoint captures existing prac-
tices from the software reliability community
for identifying and analyzing reliability issues,
formulating alternatives and synthesizing
and representing solutions. Like engineering
handbooks, general-purpose and special-
ized viewpoints provide a means to document
repeatable or reusable approaches to recurring
software issues. Clements ez a/. have intro-
duced viewtypes which establish a 3-way cat-
egorization of viewpoints. These categories are
module, component and connector, and allo-
cation viewtypes [9].

Architecture descriptions frequently use
multiple architecture views to represent the
diverse structures needed to address different
stakeholders’ various concerns. There are two
common approaches to the construction of
views: the synthetic approach and the projective
approach. In the synthetic approach, architects
construct views of the system-of-interest and
integrate these views within an architecture
description using correspondence rules. In
the projective approach, an architect derives
each view through some routine, possibly
mechanical, procedure of extraction from a
single unified model (or “uber model”) [23].
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A consequence of introducing multiple views
into an AD is a potential mismatch between
the views. Are they consistent? Are they
describing the same system? This has been
called the multiple views problem [39]. The
projective approach limits possible inconsis-
tencies, since views are derived from a single
(presumably consistent) model, but at the cost
of expressiveness: the underlying model may
not be capable of capturing arbitrary concerns.
Under the synthetic approach, architects inte-
grate views into a whole, using linkages or
other forms of traceability to cross-refer-
ence view elements to achieve consistency
[23,25]. Viewpoints often include rules for
establishing consistency or other relationships
among views.

2.2. Architecture Patterns, Styles and Reference
Aprchitectures [2* c2.12] [6*, c6,15]
[38* c11] [40* c6.3] [417, c11]

Inspired by its use in the long history of the
architecture of buildings, an architectural style
is a particular manner of construction yielding
a software system’s characteristic features. An
architectural style often expresses a software
system’s large-scale organization. In contrast,
an architectural pattern expresses a common
solution to a recurring problem within the
context of a software system — it need not
apply to the whole system. Design patterns
are discussed in section 4.4 of Software
Design KA.

Various architectural styles and patterns
have been documented [7,39]:

* General structures (e.g., layered, call-
and-return, pipes and filters, blackboard,
services and microservices)

* Distributed systems (e.g., client-server,
n-tier, broker, publish-subscribe, point-to-
point, representational state transfer
(REST))

* Method-driven (e.g.,
event-driven, data flow)

* User-computer interaction (e.g., model-
view-controller, presentation-abstraction-
control)

object-oriented,

* Adaptive systems (e.g., microkernel,
reflection and meta-level architectures)

* Virtual machines (e.g., interpreters, rule-
based, process control)

Pattern catalogs (or systems of patterns) are
used to express architectural styles and solu-
tions through coordinated sets of patterns.
Examples of pattern catalogs are [7], [19] for
n-tier architectures, [13] for service-oriented
architecture and [37] for microservice architec-
tures. Pattern catalogs are not limited to archi-
tecture styles and can be focused on addressing
specific concerns, such as security [17].

There is no strict dividing line between
architectural styles and patterns. Both pat-
terns and styles provide solutions to specific
problems in given contexts. An architectural
style expresses the global aspects of a system
or subsystem by defining its major parts of
that (sub)system and how they interact [7,38%].
An architectural style can be expressed as an
architectural pattern [7]. Architectural pat-
terns exist at varying scales and could apply
once to a single element of a system or be
applied repeatedly throughout a system.

In relation to architecture viewpoints,
which provide the languages for talking about
various aspects of software systems, a uni-
fying notion is that both patterns and styles are
idioms in those languages for expressing partic-
ular aspects of architectures (and designs, see
section 4.4 Design Patterns in Software Design
KA). An architectural pattern or style uses a
vocabulary, drawn from the viewpoint’s lan-
guage, in a specified way, to talk about view
elements, including element and relation types
and their instances, and constraints on com-
bining them [23,39]. In this way, viewpoints,
patterns and styles are mechanisms for codi-
fying recommended practices to facilitate reuse.

A reference architecture (RA) is an architec-
ture constraining or guiding other architec-
tures. Documented as a reference architecture
description, an RA provides a common basis
for the development of architectures for indi-
vidual systems, product lines or families of
systems and application domains. Reference
architectures capture commonalities to



promote ease of development, integration
and interoperability and other kinds of stan-
dardization. Reference architectures have
been developed and used in many domains
including automotive systems, healthcare,
Internet of Things, cloud computing, avionics,
manufacturing and telecommunications.

2.3. Architecture Description Languages and
Architecture Frameworks [2* c22]
[29% c11] [38%, app] [417, c6-7]

An architecture description language (ADL)
is a domain-specific language for expressing
software architectures. ADLs arose from
module interconnection languages [36] for
programming in the large. Some ADLs target
a single application domain or architectural
style (such as MetaH for avionics systems in an
event-driven style), others are wide spectrum
to frame concerns across the enterprise (such as
ArchiMate™). UML has frequently been used
as an ADL due to its widespread use in soft-
ware design activities [41¥]. ADLs often pro-
vide capabilities beyond description to enable
architecture analysis or code generation.

An  architecture framework captures the
“conventions, principles and practices for the
description of architectures established within
a specific domain of application and/or com-
munity of stakeholders” [23]. Frameworks
codify recommended practices within a spe-
cific domain and are implemented as an inter-
locking set of viewpoints or ADLs. Examples
are AUTOSAR for the automotive industry,
OMG’s Unified Architecture Framework
(UAF®) and ISO Reference Model for Open
Distributed Processing.

2.4. Architecture as Significant Decisions
[38* c8] [40*,c6.1]

Architectural design is a creative process.
During this activity, architects make many
decisions that profoundly affect the archi-
tecture, the downstream development pro-
cess and the software system. Many factors
affect decision-making, including prom-
inent concerns of stakeholders for the
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software system, its requirements, and the
available resources during development and
throughout the life cycle. The impact on
quality attributes and trade-offs among
competing quality attributes are often the
basis for design decisions.

The architectural design activity creates
a network of decisions as its outcome, with
some decisions deriving from prior decisions.
Decisions can be explicitly documented,
along with an explanation of the rationale for
each nontrivial decision. Decision analysis
provides one approach to architecture eval-
uation. (See topic 4, Software Architecture
Evaluation.)

Architecture rationale captures why an archi-
tectural decision was made. This includes
assumptions made before the decision, alter-
natives considered, and trade-offs or criteria
used to select an approach and reject others.
Recording rejected decisions and the reasons
for their rejection can also be useful. In the
future, this could either prevent a software
project from making a poor decision — one
rejected earlier for forgotten reasons — or
allow the development to recognize that rel-
evant conditions have changed and that they
can revisit the decision.

Architectural technical debt has been intro-
duced to reflect that today’s decisions for
an architecture may have significant con-
sequences later in the software system’s life
cycle. Decisions deferred can compromise its
maintainability or the future evolvability, and
that debt will have to be paid — typically by
others, not necessarily by those who caused
the debt. Such debt has an economic impact
on the system’s future development and oper-
ations. For example, when a software project
has limited time, it may develop an initial
design with little concern for modularity for
its first release. The lack of modularity can
adversely affect the development time for sub-
sequent releases, impact developers, and per-
haps compromise future maintainability of
the system. Additional functionality can be
added later only by doing extensive refactoring
which impacts future timelines and intro-
duces additional defects. [26]. Architectural
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Figure 2.3. A general model of architectural design

technical debt can be analyzed and managed,
like other concerns, using models and view-
points [27].

3. Software Architecture Process
[29*, ¢9] [38", c6-7] [41*, c4]

This section outlines a general model of an
architectural design process. It is used to
demonstrate how architectural design fits into
the general context of software engineering
processes (see Software Engineering Process
KA) and as a framework for understanding the
many architecture methods currently in use. It
also recognizes that architectural design can
take place in a variety of contexts.

3.1. Architecture in Context
[29%, c12-13] [41* 2]

Architecture occurs in several contexts. In
the traditional life cycle, there is an architec-
tural design stage driven by software system
requirements (see Software Requirements
KA). Some requirements will be architectural
drivers, influencing major decisions about the

architecture, while other requirements are
deferred to subsequent stages of the software
process, such as design or construction.

In product line or product family settings,
a product line/family architecture is devel-
oped against a basic set of needs, requirements
and other factors. That architecture will be the
starting point for one or more product instances
developed against specific product require-
ments, building upon the product baseline.

In agile approaches, there is not usually an
architecture design stage. The only architecture
description might be the code itself. In some
agile practices, the software architecture is said
to “emerge” from coding the system based on
user stories through a rapid series of develop-
ment cycles. Although this approach has had
some success with user-centric information sys-
tems, it is difficult to ensure an adequate archi-
tecture emerges for other classes of applications,
such as embedded and cyber-physical systems,
when critical architectural properties might
not be articulated by any user stories.

In enterprise and system-of-systems con-
texts, as in product lines and families, the
overarching architecture (of the enterprise,



system or product line/family) provides pri-
mary requirements and guidance on the form
and constraints upon the software architec-
ture. This baseline can be enforced through
specifications, additional requirements, appli-
cation programming interfaces (APIs) or con-
formance suites.

3.1.1. Relation of Architecture to Design
[40%, c6] [41%, c2]

Design and architecture are often blurred. It
has been said that architecture is the set of
decisions that one cannot trust to designers.
In fact, architecture emerged out of software
design as the discipline matured, largely since
the 1990s. There are various contrasts: design
often focuses on an established set of require-
ments, whereas architecture often must shape
the requirements through negotiation with
stakeholders and requirements analysis. In
addition, architecture often must recognize
and address a wider range of concerns that
may or may not end up as requirements on the
software system of interest.
3.2. Architectural Design [2*, c19-23]
Architectural design is the application of
design principles and methods within a
process to create and document a software
architecture. There are many architecture
methods for carrying out this activity. This
section describes a general model of architec-
tural design underlying various architecture
methods based upon [20].

Architectural design involves identifying a
system’s major components; their responsibil-
ities, properties, and interfaces; and the rela-
tionships and interactions among them and
with the environment. In architectural design,
fundamentals of the system are decided, but
other aspects, such as the internal details of
major components are deferred.

Typical concerns in architectural design
include the following:

* Overall architecture styles and com-
puting paradigms
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* Large-scale refinement of the system into
key components

* Communication and interaction among
components

* Allocation of concerns and design
responsibilities to components

* Component interfaces

* Understanding and analysis of scaling
and performance properties, resource
consumption properties, and reliability
properties

* Large-scale/system-wide approaches to
dominating concerns (such as safety and
security, where applicable)

An overview of architectural design is pre-
sented in Figure 2.3.

Architectural design is iterative, com-
prising three major activities: analysis, syn-
thesis and evaluation. Often, all three major
activities are performed concurrently at var-
ious levels of granularity.
3.2.1. Architecture Analysis  [27,c19] [41, 8]
Architecture analysis gathers and formulates
architecturally significant requirements (ASRs),
defined as any “requirement upon a software
system which influences its architecture” [31].
Architecture analysis is based on identified
concerns and on understanding the software’s
context, including known requirements,
stakeholder needs and the environment’s con-
straints. ASRs reflect the design problems
the architecture must solve. Often the com-
bination of initial requirements and known
constraints cannot be satisfied without conse-
quences to cost, schedule, etc. In such cases,
negotiation is used to modify incoming needs,
requirements and expectations to make solu-
tions possible. Architecture analysis produces
ASRs, initial system-wide decisions and any
overarching system principles derived from
the context (see Architecture in Context).

3.2.2. Architecture Synthesis [2*, c20]
Architecture synthesis develops candidate
solutions in response to the outcomes of
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architecture analysis. Synthesis proceeds by
working out detailed solutions to design prob-
lems identified by ASRs, and makes trade-
offs to accommodate interactions between
those solutions. These outcomes feed back to
architecture analysis resulting in elaborated
ASRs, principles and decisions which then
lead to further detailed solution elements.

[2*, c21]
[38% c14]

3.2.3. Architecture Evaluation

Architecture evaluation validates whether the
chosen solutions satisfy ASRs and when and
where rework is needed. Architecture evalua-
tion methods are discussed in topic 4 Soffware
Architecture Evaluation.

3.3. Architecture Practices, Methods, and Tactics
[2* ¢3.4] [29% c10] [38* c9-14]

There are a number of documented architec-
ture methods (see Further Readings for a list).

3.4. Architecting in the Large
[29%, c12, 14] [40%, c19]

Architectural design denotes a specific stage
of the life cycle, but is only one part of soft-
ware architecting. Software architecting does
not occur in a vacuum, as noted in section 3.1
Architecture in Context, but in an environment
that often includes other architectures. For
example, an application architecture should
conform to an enterprise architecture; to “play
well” in a system of systems, the architecture of
each constituent system should conform to the
system of systems architecture. In such cases,
these relations need to be reflected as ASRs on
the software being architected. Many software
architecting activities and principles are not
limited to software but equally apply to systems
and enterprise architecting [29]. Weinreich
and Buchgeher have extended Hofmeister
et al’s model used in section 3.2 Architectural
Design to include these activities [42]:

o architecture implementation: over-
seeing implementation and certifying

that implementations conform to the
architecture
* architecture maintenance: managing and
extending the architecture following its
implementation
* architecture management: managing an
organization’s portfolio of interrelated
architectures
 architecture knowledge management:
extracting, maintaining, sharing and
exploiting reusable architecture assets,
including decisions, lessons learned,
specifications and documentation across
the organization

4. Software Architecture Evaluation
[2*%, c21] [38*, c14] [41%, c8]

4.1. “Goodness” in Architecture
[2%,¢1.3,2] [6* c17]

Architecture analysis takes place throughout
the process of creating and sustaining an
architecture. Architecture evaluation is typ-
ically undertaken by third parties at deter-
mined milestones as a form of assessment.

Given the multi-concern, multi-disci-
plinary nature of software architecture, there
are many aspects to what makes an architecture
“good.” The Roman architect Vitruvius posited
that all buildings should have the attributes of
[firmitas, utilitas and venustas (translated from
Latin as strength, utility and beauty).

Of a software system and its architecture,
one can ask:

¢ Is it robust over its lifetime and possible
evolution?

 Is it fit for its intended use?

 Isitfeasible and cost-effective to construct
software systems using this architecture?

+ Is it, if not beautiful, then at least clear
and understandable to those who must
construct, use and maintain the software?

Each architecture concern may be a basis
for evaluation. Evaluation is conducted against
requirements (when available) or against need,
expectations and norms (in other situations).



A “good” architecture should address not only
the distinct concerns of its stakeholders, but
also the consequences of their interactions.
For example, a secure architecture may be
excessively costly to build and verify; an easy-
to-build architecture may not be maintainable
over the system’s lifetime if it cannot incorpo-
rate new technologies.

The Architecture Tradeoff Analysis
Method (ATAM) [10] provides a method-
ical approach to evaluating software architec-
tures based on quality attributes in a utility
tree and scenarios illustrating the quali-
ties. Analysis of tradeoffs among competing
quality requirements and their architectural
approaches are the key to the architecture
evaluation. Clements, et al. describe several
methods for evaluation including ATAM,
Software Architecture Analysis Method
(SAAM), and Quality Attribute Workshops
(QAW) [10]. The SARA Report defines a
general framework for software architecture
evaluation [31].

4.2. Reasoning about Architectures
[38* c10]

Each architecture concern has a distinct basis
for evaluation. Evaluation is most effective
when it is based upon robust, existing archi-
tecture descriptions. ADs can be queried,
examined and analyzed. For example, eval-
uation of functionality or behavior benefits
from having an explicit architecture view
or other representation of that aspect of the
system to study. Specialized concerns such as
reliability, safety and security often rely on
specialized representations from the respec-
tive discipline.

Often architecture documentation is unfin-
ished, incomplete, out of date or nonexistent.
In such cases, the evaluation effort must rely
on the knowledge of participants as a primary
information source.

Use cases are frequently used to check
an architecture’s completeness and consis-
tency (see Software Engineering Models and
Methods KA) by comparing the steps in the
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use case to the software architecture elements
that would be involved in carrying out those
steps [23].

For a general framework for reasoning
about various concerns, see Bass et al. [3].

4.3. Architecture Reviews [2* c21]
Architecture reviews are an effective approach
to assess an architecture’s status and quality
and identify risks by assessing one or more
architecture concerns [1]. Many reviews are
informal or expertise-based, and some are
more structured, organized around a checklist
of topics to cover. Parnas and Weiss proposed
an effective approach to conducting reviews,
called active reviews [33], where instead of
checklists, each evaluation item entails a
specific activity by a reviewer to obtain the
needed information.

Many organizations have institution-
alized architecture review practices. For
example, an industry group developed a
framework for defining, conducting and
documenting architecture reviews and their
outcomes [31].

4.4. Architecture Metrics [2* c23]
An architecture metric is a quantitative mea-
sure of a characteristic of an architecture.
Various architecture metrics have been
defined. Many of these originated as design or
code metrics that have been “lifted” to apply
to architecture. Metrics include component
dependency, cyclicity and cyclomatic com-
plexity, internal module complexity, module
coupling and cohesion, levels of nesting, and
compliance with the use of patterns, styles
and (required) APIs.

In continuous development paradigms
(such as DevOps), other metrics have evolved
that focus not on the architecture directly but
on the responsiveness of the process, such as
metrics for lead time for changes, deployment
frequency, mean time to restore service, and
change failure rate — as indicative of the state
of the architecture.
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FURTHER READINGS

Perry and Wolf, Foundations for the study of
software architecture [34]

Perry and Wolf’s Foundations circulated infor-
mally for several years before its publication in
1992. It has indeed served as a foundation for
the evolution of the discipline of software archi-
tecture, introducing a number of ideas that are
fundamental to the field, including architec-
ture as a discipline; distinguishing architecture
and design; elements of software architectures;
multiple views; architecture styles and types;
and analogies with other fields.

Bass et al., Software Architecture in Practice [27]

This book introduces concepts and recom-
mended practices of software architecture,
meaning how software is structured and how
the software’s components interact. The book
addresses several quality concerns in detail,
including: availability, deployability, energy
efficiency, modifiability, performance, test-
ability and usability. The authors offer recom-
mended practices focusing on architectural
design, architecture description, architecture
evaluation and managing architecture tech-
nical debt. They also emphasize the impor-
tance of the business context in which large
software is designed. In doing so, they present
software architecture in a real-world setting,

reflecting both the opportunities and con-
straints that organizations encounter.
4+1

Kruchten,  7be View Model

Architecture [25].

o

This seminal paper organizes an approach to
architecture description using five architecture
viewpoints. The first four are used to produce
the logical view, the development view, the
process view, and the physical view. These are
integrated through selected use cases or sce-
narios to illustrate the architecture. Hence,
the model results in 4+1 views. The views are
used to describe the software as envisioned by
different stakeholders — such as end-users,
developers, and project managers.

Rozanski and Woods,
Architecture [38%]

Software  Systems

This is a handbook for the software sys-
tems architect. It develops key concepts of
stakeholder, concern, architecture descrip-
tion, architecture viewpoint and architecture
view, architecture patterns and styles, with
examples. It provides an end-to-end archi-
tecting process. The authors provide a cat-
alog of ready-to-use, practical viewpoints for
the architect to employ that are applicable to
a wide range of systems. The book is filled
with guidance for applying these concepts
and methods.
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R.N. Taylor, N. Medvidovi¢, E. Dashofy,
Software Architecture: Foundations, Theory, and
Practice [41%]

This is a comprehensive textbook on many
aspects of software architecture, including
key ideas; software architecture in the con-
text of software engineering; the design pro-
cess; architecture modeling, analysis and
visualization; and chapters on several con-
cerns including implementation, deployment,
adaptation, non-functional properties, trust
and security.

P. Clements et al. Documenting Software
Architecture: Views and Beyond, 2nd edition [9].

'This book provides best practices on capturing
software architectures, using guidance and
examples to express architectures that stake-
holders can build, use, and maintain that
system. The book introduces a 3-way categori-
zation of views and therefore viewpoints: into
module, component and connector, and allo-
cation viewtypes, providing numerous exam-

ples of each.
Brown, Software Architecture for Develgpers [5]

Brown provides an overview of software
architecture topics from the perspective of
a developer. He discusses common architec-
ture drivers including architecture principles,
quality concerns, constraints and functional
requirements. He has an in-depth discussion
of the role of the architect in a development
setting and requisite knowledge and skills for
architects. He focuses on the practical issues
of architecture in the delivery process and
on managing risk. An appendix provides a
case study.

Fairbanks, Just Enough Software Architecture:
A risk-driven approach [16]

Fairbanks offers a risk-driven approach to
architecting within the context of develop-
ment: do just enough software architecture
to mitigate the identified risks where those

risks could result from a small solution space,
from extremely demanding quality require-
ments or from possible high-risk failures.
The risk-driven approach is harmonious
with low-ceremony and agile approaches.
Architecting, as argued by Fairbanks, is not

just for architects — but is relevant to all
developers.
Erder, Pureur and Woods, Continuous

Architecture in Practice: Software Architecture in

the Age of Agility and DevOps. [15]

This book shows how “classical” thinking
about software architecture has evolved in
the present day in the contexts of agile, cloud-
based and DevOps approaches to software
development by providing practical guidance
on a range of quality and cross-cutting con-
cerns including security, resilience, scalability
and integration of emerging technologies.
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CHAPTER 03

Software Design

ACRONYMS
API Application Programming
Interface
AOD Aspect-Oriented Design
CBD Component-Based Design
CRC Class Responsibility Collaborator
(Or Collaboration)
DFD Data Flow Diagram
DSL Domain-Specific Language
ERD Entity Relationship Diagram
FOSS Free And Open Source Software
IDL Interface Description Language
MBD Model-Based Design
MDD Model-Driven Design
(0]0) Object-Oriented
PDL Program Design Language
SDD Software Design Description
SoC Separation of Concerns
UML Unified Modeling Language
INTRODUCTION

This chapter considers software design from
several perspectives — focusing on basic con-
cepts, context and processes, software design
qualities and strategies, and recording and
evaluating designs.

Design is used in distinct but closely related
ways to refer to (1) the discipline (“use of sci-
entific principles, technical information, and
imagination in the definition of a software
system to perform [prespecified] functions
with maximum economy and efficiency”)
[11]; (2) the processes for performing within
that discipline; (3) the resu/t of applying that

discipline; and (4) the szage in the life cycle
of a software system during which those pro-
cesses yield those results.

A software design description (SDD) docu-
ments the result of software design. It is a “rep-
resentation of software created to facilitate
analysis, planning, implementation, and deci-
sion-making. The software design description
is used as a medium for communicating soft-
ware design information and can be thought of
as a blueprint or model of the system” [11].

The SDD, which may take many forms,
encompasses the refinement of that software
into components, the organization of those
components, and the definition of interfaces
among them and between the software and
the outside world — to a level of detail that
enables their construction.

Software design, viewed as a life cycle
activity, is the application of software engi-
neering discipline in which software require-
ments are analyzed to define the software’s
external characteristics and internal structure
as the basis for the software’s construction.

Software design takes place in three stages:

* architectural design of the software system

* high-level or external-facing design of
the system and its components

* detailed or internal-facing design

Architectural designis a partofarchitecting,
discussed in the Software Architecture KA.

BREAKDOWN OF TOPICS FOR
SOFTWARE DESIGN

The breakdown of topics for the Software
Design KA is shown in Fig. 3.1.

3-1
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Figure 3.1. Breakdown of topics for the Software Design KA

1. Software Design Fundamentals [3*][47]
The concepts, notions and terminology intro-
duced here form a basis for understanding the
role and scope of software design.

1.1. Design Thinking [3* c1-3] [4*, c1-2]
Design is all around us, in the things and
organizations that have been created to meet
a need or solve a problem.

In a general sense, design can be viewed as
a form of problem-solving. For example, the
concept of a wicked problem — a problem with
no definitive solution — is interesting in terms
of understanding the limits of design. Many
other notions and concepts help us understand
design in its general sense: goals, constraints,
alternatives, representations and solutions.
(See also Design as a Problem-Solving Activity
in Engineering Foundations KA.)

Design thinking comprises two essentials:
(1) understanding the need or problem and
(2) devising a solution. Ross, Goodenough
and Irvine offer an elaboration of design
thinking appropriate to software:

This process consists of frve basic steps: (1) crys-
tallize a purpose or objective; (2) formulate a
concej)tfor how the purpose can be achieved;

(3) devise a mechanism that implements the con-
ceptual structure; (4) introduce a notation for
expressing the capabilities of the mechanism
and invoking its use; (5) describe the usage of the
notation in a specific problem context to invoke

the mechanism so the purpose is achieved. [20]

This is particularly appropriate because
much of software design consists of cre-
ating the necessary wocabulary to express a
problem, express its solution and implement
that solution. The steps emphasize the lin-
guistic nature of software design problem
solving. This is a recurring pattern we see
throughout high-level design, detailed design
and architecting (see Architecting in the Large
in Software Architecture KA). Therefore,
Software Design is a practical process of
transforming a problem statement into a solu-
tion statement. Software design shares com-
monalities with other kinds of design. Design
can be further understood via design theory [8].

[4%, c13-14]
[21%, ¢19-20]

1.2. Context of Software Design

Software design is an important part of the
software development process. To understand
the role of software design is to see how it fits
into the software development life cycle (see



Software Process KA). To understand that
context, it is important to understand the
major characteristics and roles of software
requirements, software construction, software
testing, and software maintenance. The con-
text varies with many factors, including degree
of formality and stage of the life cycle.
Software design is the transformation of
customer and other requirements, needs, and
concerns into implementable design specifica-
tions. Its contexts include the following:

¢ Software Design’s relationship with soft-
ware requirements: The requirements
establish a set of problems that the soft-
ware design must solve.

¢ Software Design’s relationship with soft-
ware architecture: In cases where an
architecture has been established, that
architecture constrains the design by
capturing fundamental aspects of the
system: such as its major components and
their interconnections, application pro-
gramming interfaces (APIs), styles and
patterns to be used, and architectural
principles to be observed and enforced.

* Software Design’s relationship with soft-
ware construction: The software design
must provide a guide to implementors on
building the system.

* Software Design’s relationship with soft-
ware testing: Software design provides a
foundation for an overall testing strategy
and test cases that ensure that the design
is properly implemented and operates
as intended.

1.3. Key Issues in Software Design  [3¥, p691ff]
[4*% ¢c17.1.1] [21%, c6-7]

Many key issues must be dealt with when
designing software. Some are quality con-
cerns that all software must address (per-
formance, security, reliability, usability,
maintainability, etc.). Another important
issue is how to refine, organize, intercon-
nect and package software components.
These issues are so fundamental that all
design approaches address them in one
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way or another. (See topic Stakeholders and
Concerns in Software Architecture KA, sec-
tion 1.4 Software Design Principles, and topic
5 Software Design Strategies and Methods.)

In contrast, other issues “deal with some
aspect of software’s behavior that is not in the
application domain, but which addresses some
of the supporting domains” [2]. Such issues,
which often crosscut the system’s function-
ality, are referred to as aspects, which “tend not
to be units of software’s functional decompo-
sition, but rather to be properties that affect
the performance or semantics of the compo-
nents in systemic ways” [12].
1.4. Software Design Principles [4*, c4.2]
A principle is “a fundamental truth or proposi-
tion that serves as the foundation for a system
of belief or behavior or for a chain of rea-
soning.” [Oxford English Dictionary]

Design principles provide direction or guid-
ance for making decisions during design.
Some principles originated during the early
days of software engineering, others even pre-
date the discipline, deriving from best prac-
tices in engineering unrelated to software.
(See Engineering Foundations KA.) Decision
making can also be assisted by quantita-
tive methods, such as discussed in Software
Engineering Economics KA. Software
design principles are key notions that provide
the basis for many different software design
concepts, approaches and methods. The prin-
ciples listed below apply to any of the three
stages of design. Many of these principles are
interrelated. Whether alone or used in combi-
nation with other principles, they are reflected
elsewhere in software design to produce many
concepts and constructs found in design cap-
ture, strategies and methods. This is itself an
application of the design thinking process
above. Software design principles include the
following:

* Abstraction is “a view of an object that
focuses on the information relevant to
a particular purpose and ignores the
remainder of the information” [11].“The



3-4 SWEBOK® GUIDE V4.0a

abstraction principle . . . helps to iden-
tify essential properties common to
superficially different entities” [20]. (See
also topic Abstraction in the Computing
Foundations KA.)

Separation of concerns (SoC). A design con-
cern is an “area of interest with respect to
a software design” [11] that is relevant
to one or more of its stakeholders. By
identifying and separating concerns, the
designer can focus on each concern for the
system in isolation about which Dijkstra
said “even if not perfectly possible, [SoC]
is yet the only available technique for
effective ordering of one’s thoughts” [5].
(See also topic Stakeholders and Concerns
in Software Architecture KA.)
Modularization (or refinement or decompo-
sition) structures large software as com-
prising smaller components or units. Each
component is named and has well-de-
fined interfaces for its interactions with
other components. Smaller components
are easier to understand and, therefore, to
maintain. There are numerous modular-
ization strategies. (See topic 5 Software
Design Strategies and Methods.)
Traditionally, the goal is to place distinct
functionalities and responsibilities in dif-
ferent components. David Parnas advo-
cated that each module in a system should
have a single responsibility [17]. One way
to think of modularization is as a special
case of more general strategies, such as sep-
aration of concerns or divide and conquer.
(see topic Problem-Solving Techniques in
Computing Foundations).

Encapsulation (or information bhiding)
builds upon the principles of abstraction
and modularization so that nonessential
information is less accessible, allowing
users of the module to focus on the essen-
tial elements at the interface.

Separation of interface and implementa-
tion is an application of encapsulation
that involves defining a component by
specifying its public interfaces, which
are known to and accessible to clients;
isolating the use of a component from

the details of how that component is
built. (See Encapsulation (or information
hiding) above.)

Coupling is defined as “a measure of the
interdependence among modules in a
computer program” [11]. Most design
methods advocate that modules should
be loosely or weakly coupled.

Cobhesion (or localization) is defined as “a
measure of the strength of association
of the elements within a module” [11].
Cohesion highlights organizing a mod-
ule’s constituents based on their relat-
edness. Most design methods advocate
that modules should maximize their
cohesion/locality.

Uniformity is a principle of consistency
across software components — common
solutions should be produced to address
common or recurring problems. These
include naming schemes, notations and
syntax, interfaces that define access to
services and mechanisms, and ordering
of elements and parameters. This can be
achieved through conventions such as
rules, formats and styles.

Completeness (or sufficiency) means ensuring
that a software component captures the
important characteristics of an abstrac-
tion and leaves nothing out. Completeness
takes various forms, perhaps the most
important of which is design completeness
against requirements: a design should be
sufficient for designers to demonstrate how
requirements will be met and how subse-
quent work will satisfy those requirements.
Design should be complete with respect to
the modes and states of the software.
Verifiability means that information
needed to verify the design against its
requirements and other constraints is
available. This is relevant for any software
butis of particularimportance for high-as-
surance software, such as software where
security, reliability or safety-critical con-
cerns are present. An SDD should be
sufficient as a basis for verifying a design.
(See Software Testing KA and Software
Quality KA.)



o Other design principles. With the increased
appearance of autonomous systems, the
use of machine learning and artificial
intelligence, and, generally, systems with
widening social impacts, approaches to
Ethically Aligned Design have been devel-
oped to address concerns including
universal human values, political self-de-
termination, and data agency and tech-
nical dependability [9]. The general
principles of Ethically Aligned Design
are human rights, well-being, data agency,
effectiveness, transparency, accountability,
awareness of misuse, and competence.

2. Software Design Processes
[47, 3] [217 €2, ¢7]

Software design is generally considered a mul-
tistage process or activity. Software design
can be divided into the following stages or
phases. When necessary, we distinguish the
phase from the general activity:

¢ Architectural design stage
* High-level design stage
* Detailed design stage

The architectural design stage addresses
the fundamentals of the system as a whole and
in relation to its environment (see Software
Architecture KA).

'The high-level design stage is ourward-facing
— developing the top-level structure and orga-
nization of the software, identifying its various
components and how that software system and
its components interact with the environment
and its elements.

The detailed design stage is inward-facing
— specifying each component in sufficient
detail to facilitate its construction and to meet
its outside obligations, including how soft-
ware components are further refined into
modules and units.

Each stage reflects the basic pattern out-
lined in section 1.1 Design Thinking.

Not all stages are found in every soft-
ware process. However, when present, each
stage creates an obligation upon the next
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stage regarding the software which is under
development.

Although software developers generally
follow similar guidelines for what happens
in each stage, there are no strict bound-
aries between stages regarding what must be
done and when. For example, for many soft-
ware systems, the choice of an algorithm to
sort data will be deferred to programmers,
within the constraints and guidance provided
by the system’s requirements, its architecture
description or design specifications. However,
for another software system, the existence of
a suitable algorithm could be architecturally
significant and must be determined early in
the life cycle. Without that algorithm, there
is no possibility of constructing the software
to meet its requirements.

Some rules of thumb for each stage include
the following:

* 'The architectural design stage defines
a computational model, the major com-
putational elements, and the important
protocols and relationships among them.
This stage develops strategies to address
crosscutting concerns, such as perfor-
mance, reliability, security and safety,
and articulation of crosscutting deci-
sions, including system-wide styles (e.g.,
a transactional n-tier style versus a pipes
and filters style, together with the ratio-
nale for such decisions).

* The high-level design stage includes iden-
tification of the primary computational
elements and significant relationships
among them, with a focus on each major
component’s existence, role and interfaces.
That definition should be sufficiently
detailed to allow designers or program-
mers of client components to correctly and
efficiently access each service’s capabilities
— without having to read its code.

* 'The detailed design stage defines each
module’s internal structure, focusing on
detailing and justifying choices of algo-
rithms, data access and data representa-
tion. The detailed design specifications
should be sufficient to allow programmers
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to code each module during construction
(see Software Construction KA). The
code is a representation of the solution that
is sufficiently detailed and complete that a
compiler (or interpreter) can execute it.

2.1. High-Level Design [3* c5] [4%, c6]
High-level design specifies the interaction of
a system’s major components with one another
and with the environment, including users,
devices and other systems. High-level design
addresses the following:

* External events and messages to which
the system must respond

* Events and messages which the system
must produce

* Specification of the data formats and pro-
tocols for events and messages

* Specification of the ordering and timing
relationships between input events and
messages, and output events and messages

* Tracing and analysis of end-to-end trans-
actions and event threads

* Data persistence (how data is stored
and managed)

High-level design is undertaken within
the envelope established by the system’s soft-
ware architecture (if any). Each of the above
may be guided or constrained by architecture
directives. For example, event signaling and
messaging will use the protocols and modes
of interaction established by the architecture.
Data formats and protocols will use data and
communication standards specified by the
architecture. Absent an explicit architecture
design stage, some of these directives will be
established by the software requirements or
decided during high-level design.
2.2. Detailed Design [4* c14]
The detailed design stage proceeds within the
constraints established by the high-level design.
It specifies major system components’ internal
characteristics, internal modules and their
interconnections to other modules, services

and processes they provide, computing proper-
ties, algorithms, and data access rules and data
structures. This includes the following:

* Refinement of major system components
into modules or program units, including
opportunities for using off-the-shelf com-
ponents and application frameworks

 Allocation of design responsibilities to
modules and program units

¢ Interactions among modules

* Scope and visibility among components,
modules and program units

¢ Component modes, component states
and transitions among them

* Data and control interdependencies

¢ Data organization, packaging
implementation

¢ User interfaces

* Requisite algorithms and data structures

and

3. Software Design Qualities [4%, c4]
Software requirements and architecture direc-
tives are intended to guide software toward
certain characteristics or design qualities.
Design qualities are an important subclass of
concerns (see topic Stakeholders and Concerns
in Software Architecture KA). One role of
design principles (see section 1.4 Software
Design Principles) is to help software achieve
these qualities. Among the characteristics of
interest to designers are the following:

3.1. Concurrency [21% c17]
Design for concurrency concerns how software
is refined into concurrent units such as pro-
cesses, tasks, and threads and the consequences
of those decisions with respect to efliciency,
atomicity, synchronization and scheduling.
3.2. Control and Fvent Handling [21% c21]
Event handling is concerned with how to
organize control flow as well as how to handle
reactive and temporal events through var-
ious mechanisms including synchronization,
implicit invocation and callbacks.



3.3. Data Persistence [21% c6, c16]
Data persistence concerns the storage and
management of data throughout the system.
3.4. Distribution of Components [21% c17]
Distribution concerns how software com-
ponents are distributed across hardware
(including computers, networks and other
devices) and how those components commu-
nicate while meeting performance, reliability,
scalability, availability, monitorability, busi-
ness continuity and other expectations.

3.5. Errors and Exception Handling, Fault

Tolerance [217% c11]
This concern pertains to how to prevent,
avoid, mitigate, tolerate and process errors
and exceptional conditions.

3.6. Integration and Interoperability
[4%,c11, c14, c16]

This issue arises at the enterprise or sys-
tem-of-systems level or for any complex
software when heterogeneous systems or
applications need to interwork through
exchanges of data or accessing one another’s
services. Within a software system, the issue
arises when components are designed using
different frameworks, libraries or protocols.

3.7. Assurance, Security, and Safety
[21% c10-14]

High assurance spans a number of software
qualities, including security and safety con-
cerns, pertaining to whether the software
behaves as intended in critical situations, such
as in the face of hazards. Security becomes a
key concern for distributed applications where
components communicate using different pro-
tocols and media. Design for security concerns
how to prevent unauthorized disclosure, cre-
ation, change, deletion, or denial of access to
information and other resources in the face of
attacks upon the system or violations of system
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policies to limit damage; provide continuity of
service; and assist repair and recovery. Design
jfor safety pertains to managing the software’s
behavior in circumstances which might lead to
harm to or loss of human life or damage to
property or the environment.
3.8. Variability [7*]
Variability concerns permissible variations in
a software system. It is a fundamental aspect
of most software [6]. It is the ability to create
software system variants for different market
segments or contexts of use.

Interest in variability first arose in software
product lines and system families, to accom-
modate and manage deployment of multiple
variants such as for different organizations
or markets. (See appendix B 6, Standards for
product line, methods and tools). It is also
relevant to software ecosystems and con-
text-aware software. (See also 3.5 Reuse in
Construction, Software Construction KA.)

Feature models are used to gather require-
ments and dependencies into bundles. (See
Feature-Driven Development, under topic
4.1 Agile Methods in Software Engineering
Models and Methods KA).

4. Recording Software Designs
[17] [4* c7-8]

The outcome of design processes is accumu-
lated knowledge and work products recording
that knowledge. Work products of software
design capture (1) aspects of the problems to
be solved, using the vocabulary of the domain;
(2) a solution vocabulary for solving the design
problems (see section 1.1 Design Thinking);
(3) the major decisions that have been taken;
and (4) explanations of the rationale for each
nontrivial decision. Recording the rationale
for important decisions enhances the software
product’s long-term maintainability when
modifications or enhancements are consid-
ered (see section 4.6 Design Rationale). These
work products, often termed design descrip-
tions or design specifications, can take the form
of texts, diagrams, models and prototypes
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that comprise the blueprints of the software
to be implemented.

A fundamental aspect of software design
is communication about the design among
designers, and to customers, implementers and
other stakeholders. This is the case whether
the software is developed using agile, tradi-
tional or formal methods. The communication
will vary depending upon the target audi-
ence, the level of detail being communicated,
and relevance to the concerns of the stake-
holders. For example, when using traditional
or formal methods, the design often evolves
through a progression of design descriptions,
while in agile approaches the evolving design
may be implicit in the minds of developers
and only explicit as code. While the latter
approach supports the agility of developers,
other stakeholders, such as those concerned
with requirements, certification, testing and
quality assurance may need explicit design
information to do their work. Therefore,
projects should make conscious decisions
about which design specifications are needed
based upon stakeholder audience, subject and
intended usage.

Designers can analyze and evaluate these
work products to determine whether the
design can meet the requirements and con-
straints on the software. Software design also
examines and evaluates alternative solutions
and trade-offs. In addition to using them
as inputs and as the starting point for con-
struction and testing, stakeholders can use
the design work products to plan subsequent
activities, such as system verification and
validation.

As design concepts evolve, so do their rep-
resentations (see section 1.1 Design Thinking);
part of the design process involves creating
appropriate vocabularies for problems and
solutions. An informal sketch may be most
appropriate for the early stages. It is useful
to distinguish in-process (“working”) spec-
ifications from final design products. The
former are produced &y the design team for the
design team; the latter may be produced for
known stakeholders or even for an unknown
future audience.

Many notations exist to represent software
design artifacts. Software design is often car-
ried out using multiple types of notation. Two
broad areas of concern are software struc-
tures and software behaviors. Some are used
to describe a design’s structural organization,
others to represent the software’s intended
behavior. Below, they are categorized as nota-
tions for structural and behavioral concerns
(see section 4.2 Structural Design Descriptions
and section 4.3 Bebavioral Design Descriptions,
respectively). Certain notations are used
mostly during architectural design and others
mainly during detailed design; some are useful
throughout all stages of software design. Some
notations are closely tied to the context of spe-
cific design methods (see Software Design
Strategies and Methods KA).

'The Unified Modeling Language (UML) is
a widely used family of notations addressing
both structural and behavioral concerns and
is used in all design stages, from architectural
through detailed design [1].

4.1. Model-Based Design  [4,¢7.3] [21%,¢5.5]

Over the history of software engineering,
including architecture and design, there
has been an evolution from document-based
artifacts to model-based artifacts. Model-
Based Design (MBD) is an approach to
recording designs where models play an
important role.

This trend reflects the limitations of docu-
ment-based artifacts and the increased capa-
bilities of automated tools. Document-based
artifacts use natural language and informal
diagrams to convey designers’ intentions,
which might introduce ambiguity and
incompleteness. Even when documents use
well-defined formats, relevant information
might be spread across documents, making
understandability and analysis difficult.
With MBD, appropriate tooling can gather
and organize relevant information for use by
designers and other stakeholders in an acces-
sible form.

Modern tools have accelerated the trend
from document to model-based artifacts.



Tooling enables animation or simulation of
various software aspects, analyses of what-if
scenarios and trade-offs, and rapid proto-
typing. Tooling also facilitates continuous
testing and integration approaches, enhanced
and interactive traceability, and knowledge
capture and management, which are inefh-
cient or even infeasible with document-based
approaches.

Model-driven development (MDD) is a
development paradigm that uses models as
the development process’ primary artifacts (see
Software Engineering Models and Methods KA).

4.2. Structural Design Descriptions
[1*, c4-14][4*, c7,c10] [7*, c4] [21%, c5.3]

"The following types of notation, most of which
are graphical, are used to represent the struc-
tural aspects of a software design — that is,
they are used to describe the major compo-
nents and how they are interconnected (static
view) and the allocation of responsibilities to
components and modules:

¢ Class and object diagrams are used to rep-
resent a set of classes and objects and their
interrelationships.

¢ Component diagrams are used to rep-
resent a set of components (replaceable
elements of a system that conform to
and provide the realization of a set of
interfaces) and their interconnections.
Component models evolved from ear-
lier module interconnection languages
into the package systems of program-
ming languages like Ada and Java and
the sophisticated module systems of cur-
rent functional language systems such as
Haskell and Coq.

* Class responsibility collaborator cards
(CRCs) are used to denote the names of
components (classes), their responsibil-
ities and the components they interact
with to meet those responsibilities.

* Deployment diagrams are used to repre-
sent a set of physical nodes and their inter-
connections to model the physical aspects
of software as deployed on hardware.
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* Entity relationship diagrams (ERDs) are
used to represent conceptual, logical and
physical models of data as stored in infor-
mation repositories or as a part of inter-
face descriptions.

* Interface description languages (IDLs)
are programming-like languages used to
define the interfaces (names and types
of exported operations) of software
components.

* Structure charts are used to describe the
calling structure of programs (that is, they
show which modules call, and are called
by, which other modules).

4.3. Behavioral Design Descriptions
[1* c15-24] [4%,c9-10] [7*, 5] [21%, c5.4]

'The following notations and languages, some
graphical and some textual, are used to describe
the dynamic behavior of software systems and
their components. Many of these notations
are useful mostly, but not exclusively, during
detailed design. Moreover, behavioral descrip-
tions can include rationale for design decisions
(see section 4.6 Design Rationale).

* Activity diagrams are used to show flow
of a computation from activity to activity.
They also can represent concurrent activ-
ities, their inputs and outputs and oppor-
tunities for concurrency.

* Interaction diagrams characterize the
interaction among a group of objects.
There are two major kinds of interaction
diagrams: communication (or collabora-
tion) diagrams and sequence diagrams.
Communication diagrams show inter-
actions among objects with an emphasis
on their links and the messages they
exchange on those links. Sequence dia-
grams show interactions among objects,
with an emphasis on the temporal ordering
of messages passed among those objects.

* Data flow diagrams (DFDs) are used to
show data flow among computing ele-
ments. A DFD provides “a description
based on modeling the flow of infor-
mation around a network of operational
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elements, with each element making use
of or modifying the information flowing
into that element” [4]. DFDs have other
uses, such as security analysis, as they
identify possible paths for attack and dis-
closure of confidential information.

* Decision tables and diagrams are used to
represent complex combinations of con-
ditions and actions.

* Flowcharts are used to represent the flow
of control and the sequence of associ-
ated actions.

* State (transition) diagrams and statecharts
are used to show transitions from state to
state and how a component’s behavior
changes based on its current state and
response to input events.

* Formal specification languages are predomi-
nantly textual languages founded upon basic
notions from mathematics (for example,
type, set, sequence, logical proposition) to
rigorously and abstractly define software
component interfaces and behavior, often in
terms of pre- and post-conditions, invariants,
type checking, and computational models
(see section Formal Methods in Software
Engineering Models and Methods KA).

* Pseudocode and program design lan-
guages (PDLs) are structured, program-
ming language-like notations used to
describe a procedure’s processing behavior,
generally at the detailed design stage. The
use of these languages is less common
today but is still found in the documenta-
tion of algorithms.

4.4. Design Patterns and Styles
[3* ¢c12] [4*, c15] [7*,c1-2] [21%, c7.2]

Succinctly described, a pattern is “a common
solution to a common problem in a given context”
[7]. Design patterns include the following:

* Creational patterns (e.g., builder, factory,
prototype, singleton)
* Structural patterns (e.g., adapter, bridge,

composite, decorator, fagade, fly-
weight, proxy)
* Behavioral patterns (e.g., command,

interpreter, iterator, mediator, memento,
observer, peer-to-peer, publish-subscribe,
state, strategy, template, visitor)

Design patterns can be used to reflect idioms
that have proven useful in solving particular
design problems in the past, establish a solution
vocabulary, and document and explain design
decisions. They arise at all stages of design,
including architectural design. Often architec-
tural styles can be viewed as patterns “in the
large,” describing common solutions to archi-
tecture-level problems that pervade the soft-
ware. (See also topic 2.2 Architecture Styles and
Patterns, Software Architecture KA).

4.5. Specialized and Domain-Specific
Languages [21% c15]
Not every design representation falls easily
into the structure/behavior dichotomy. For
example, user interface design mixes the
structural layout of what a user might see with
the behavioral logic of sequencing screens
based upon user actions. Specialized concerns
such as safety and reliability often have their
own forms of representation that have evolved
among specialists in those communities [21].
A recent trend has been the maturing of
domain-specific languages (DSLs) and widely
available tools to develop them. In this
approach, part of the design process is codifying
concepts and constructs of a specific application
domain to create a computer language for that
domain so that representing the design using
these constructs leads to an animated or exe-
cutable implementation. DSLs blur the lines
among modeling languages, design languages
and programming languages in this approach.
There are DSLs and supporting tools for
domains such as simulation; real-time, reactive
and distributed systems; game development;
user interfaces; test development; and language
processing tools. The growth of DSLs has been
facilitated by increasingly powerful gram-
mar-driven tools that, given a language defi-
nition, can generate a graphical user interface,
syntax checkers, code generators, compilers
and linkers for the specialized language.



4.6. Design Rationale [3*, c16][4*, c12]

[21%, c6.1]

A useful design outcome is insight into and
explicit documentation of the major decisions
taken, along with an explanation of the ratio-
nale for each decision. Design rationale cap-
tures why a design decision was made. This
includes prior assumptions made, alternatives
considered, and trade-offs and criteria ana-
lyzed to select one approach and reject others.

Although the reasons for decisions are likely
to be obvious to the current design team, they
can be less obvious to those who modify or main-
tain the system after deployment. Recording the
rationale enhances the software product’s long-
term maintainability. Continuing to capture
the rationale for changes during maintenance
also contributes to the software’s viability.

It can also be useful to capture rejected deci-
sions and the reasons for rejection. Capturing
these rationales can enable a team to revisit
a previously rejected decision when assump-
tions, requirements or constraints change. The
importance of rationale is visible, for example,
in free and open-source software (FOSS)
projects, which often involve large, distributed
teams of developers with frequent turnover.

Design rationale may be captured as part
of a software design description or as a com-
panion artifact. Often rationale is captured in
text, but other forms of representation can also
be used, such as graphs that portray a design
as an interconnected network of decisions.

5. Software Design Strategies and Methods
[21%, 3]

Various strategies and methods exist to struc-
ture and guide the design process; many of
these evolved from programming styles or
paradigms. In addition to embodying one or
more general strategies, most design methods
focus on making one or more design concepts
(whether objects, methods or events) promi-
nent as organizing themes for the software.
These themes then guide the designers as to
what to focus on first, how to proceed, and
how to structure modules.
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5.1. General Strategies [4*, c13]
Some often-cited examples of general strategies
useful in the design process include divide-and-
conquer and stepwise refinement strategies; top-
down vs. bottom-up strategies; strategies using
heuristics, patterns and pattern languages; and
iterative and incremental approaches.

5.2. Function-Oriented (or Structured)
Design [4* 9]
This is one of the classical software design
methods. It focuses on refinement (or decom-
position) to identify major software func-
tions, elaborating them in a top-down manner.
Structured design often follows structured anal-
ysis, producing DFDs and associated process
descriptions. Various tools enable the automated
translation of DFDs into high-level designs.
5.3. Data-Centered Design [4* 9]
[21% c5.4.1]

Data-centered design starts from the data
structures a program manipulates rather than
from the functions it performs. The software
designer specifies the input and output data
structures and then develops program units
that transform inputs into outputs. Various
heuristics have been proposed to deal with spe-
cial cases, such as cases where there is a mis-
match between the input and output structures.
5.4. Object-Oriented Design [4*, c10]
Numerous software design methods based
on objects have been proposed. The field
has evolved from the early object-oriented
design of the mid-1980s (where nouns depict
objects; verbs depict methods; and adjec-
tives depict attributes), where inheritance
and polymorphism play key roles, to the field
of component-based design (CBD), where
metainformation can be defined and accessed
(through reflection, for example). Although
OOD’s roots stem from the concept of data
abstraction, responsibility-driven design has
been proposed as an alternative underlying
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principle of OOD. Often design strate-
gies are provided with mnemonics such as
SOLID (Single-responsibility, Open—closed,
Liskov substitution, Interface segregation,
and Dependency inversion) principles of class
design and SOFA (Short, One thing, Few
arguments and Abstraction level consistency)
principles for method design.
5.5. User-Centered Design [3* ¢9]
User-centered design is more than a design
method; it is a multidisciplinary approach
emphasizing a deep understanding of users
and their needs as the basis for designing user
experiences within the context of their orga-
nization and the tasks to be accomplished. It
involves gathering user requirements, creating
a user flow of tasks and decisions, creating
prototypes or mockups representative of user
interfaces, and evaluating the design solution
against original requirements [16].

5.6. Component-Based Design (CBD)
[1%,¢25,c29] [4%, c11, cl16] [21%, c16]

CBD decomposes a software system into one
or more standalone components that com-
municate only on well-defined interfaces and
conform to a system-wide standard com-
ponent model. A software component is an
independent unit, having well-defined inter-
faces and dependencies that can be composed
and deployed independently. CBD addresses
issues related to providing, developing and
integrating such components to improve
reuse. CBD often emphasizes common APIs
for all components and specialized APIs for
specific services or responsibilities.

5.7. Ewent-Driven Design [21% ¢5.4.2]
Event-driven design is an approach where a
system or component invokes its operations in
reaction to events (indirect invocation) [15].
Publish/subscribe messaging (broadcasting)
is often used as means of transporting events
via the network to all interested subscribers.
Publish/subscribe keeps the producers and

consumers decoupled using a message broker
with channels called topics. This differs from
Point-to-point messaging where senders and
receivers need to know each other to deliver
and receive a message. Different types of event
processing exist, i.e. simple event processing,
event stream processing and complex event
processing. Message-based systems frequently
incorporate identifiable senders and receivers
within the design. Event-driven systems may
not identify senders and receivers explicitly —
instead each module produces events while lis-
tening for any events they care about or need
to respond to [14]. “Anonymous” asynchro-
nous message and event processing are good
strategies for scalable systems.

[1* ¢c10]
[21% ¢31]

5.8. Aspect-Oriented Design (AOD)

AOD is a method by which software is con-
structed using aspects to implement the cross-
cutting concerns and extensions identified in
software requirements [12]. AOD evolved
from object-oriented design and program-
ming practices. Although it has yet to become
a widespread design or programming para-
digm, the aspect-oriented perspective is fre-
quently used in application frameworks and
software libraries where parameters of the
framework or library can be configured with
aspect declarations.

5.9. Constraint-Based Design [3* c11]
Constraints’ role in the design process is to
limit the size of a design space to exclude infea-
sible or unacceptable alternatives. Constraints
accelerate design because they force a few early
decisions. The constraints can reflect limits
imposed on the hardware, software, data, oper-
ational procedures, interfaces or anything that
affects the software. The constrained design
space can then be explored with search or back-
tracking methods. Constraint-based design
approaches are used in user interface design,
gaming and other applications. In general,
constraint satisfaction problems can be compu-
tationally intractable; however, various kinds
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to approximate or solve constraint problems.

5.10. Domain-Driven Design [4* ¢c13.6.2,
c18.3]

Domain-driven design is a method in which
the designer uses a domain-specific language
shared with analysts and other stakeholders to
describe the target software system. Through
this shared language, objects, roles, events,
and activities specified in the software require-
ments can be expressed in the software design
descriptions. (See the Requirements KA).

5.11. Other Methods [21%, c18—c21]

Other approaches to design exist (see Software
Engineering Models and Methods KA).
For example, iterative and adaptive methods
implement software increments and reduce
the emphasis on rigorous software require-
ments and design.

Service-oriented methods builds distrib-
uted software using web services executed on
distributed computers. Software systems are
often constructed using services from different
providers interconnect with standard proto-
cols (e.g., HT'TP, HTTPS, SOAP) designed
to support service communication and service
information exchange.

6. Software Design Quality Analysis and
Evaluation [4%, c7] [21%, c24]
6.1. Design Reviews and Audits [4*,¢5.3]
Design reviews are intended as comprehen-
sive examinations of a design to assess con-
cerns such as status or degree of completion,
coverage of requirements, open or unresolved
issues and potential problems. A design review
can be undertaken at any stage of design.
Design reviews can be conducted by the
design team, by an independent third party
or other stakeholder. A design audit is more
narrowly focused on a set list of characteristics

(e.g., a functional audit). (See also section 2.3
Reviews and Audits in Software Quality KA).
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6.2. Quality Attributes [21% c24]
Various attributes contribute to the quality of
a software design, including various “ilities”
(modularity, maintainability, portability, test-
ability, usability) and “nesses” (correctness,
robustness). Qualities are a major subset of
concerns (see topic Stakeholders and Concerns
in Software Architecture KA). Some qualities
can be observed at runtime (e.g., performance,
security, availability, functionality, usability);
others cannot (e.g., modifiability, portability,
reusability, testability); some (e.g., concep-
tual integrity, correctness, completeness) are
observable in the design of the software.

6.3. Quality Analysis and Evaluation

Techniques [21% c24]
Various tools and techniques can help in ana-
lyzing and evaluating software design quality.
(See also topic Software Quality Tools in
Software Quality KA.)

* Software design reviews include informal
and rigorous techniques to determine
software qualities based on SDDs and
other design artifacts for example, archi-
tecture reviews, design reviews and
inspections; scenario-based techniques;
requirements tracing.

* Static analysis: formal or semiformal static
(nonexecutable) analysis that can be used
to evaluate a design (for example, fault-
tree analysis or automated cross-checking).
Design vulnerability analysis (for example,
static analysis for security weaknesses)
can be performed if security is a concern.
Formal design analysis uses mathemat-
ical models that allow designers to predict
the behavior and validate the performance
of the software instead of having to rely
entirely on testing. Formal design anal-
ysis can be used to detect residual speci-
fication and design errors (perhaps caused
by imprecision, ambiguity, and sometimes
other kinds of mistakes). (See also Software
Engineering Models and Methods KA.)

* Simulation and prototyping: dynamic
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techniques to evaluate a design (for
example, performance simulation or fea-

sibility prototypes).

6.4. Measures and Metrics
[4*, c5,c17] [21% c24.5]

Measures can be used to assess or to quanti-
tatively estimate various aspects of a software
design; for example, size, structure, or quality.
Most measures that have been proposed are
based upon the approach used for producing
the design (see topic 5 Software Design
Strategies and Methods). These measures are
classified in two broad categories:

* Function-based (structured) design mea-
sures: measures obtained by analyzing
functional decomposition; generally rep-
resented using a structure chart (or hierar-
chical diagram) on which various measures
can be calculated.

* Object-oriented design measures: the
design structure is typically represented
as a class diagram, on which various mea-
sures can be computed. Measures on

the properties of the internal content of
each class can also be calculated. Object-
oriented measures also consider the com-
plexity of the code based on the lines of
code per method or the number of mes-
sages sent.

6.5. Verification, Validation, and Certification
[21* c7-8]

Systematic analysis or evaluation of the design
plays an important role in each of these
three areas:

* verification: to confirm that the design
satisfies stated requirements;

* validation: to establish that the design will
allow the system to meet the expectations
of its stakeholders, including customers,
users, operators and maintainers;

* certification: third-party attestation of
conformity of design to its overall spec-
ification and intended usage.

(See also section 2.2 Verification and
Validation in Software Quality KA.)

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Booch Brooks Budgen | Gamma | Sommerville

etal. [17%] [3%] [4%] etal. [7%] [21%]
1. Software Design Fundamental cl-3 cl-2
1.1. Design Thinking cl-3 cl-2
1.2. Context of Software Design c13-14 ¢19-20
1.3. Key Issues in Software Design p69ff cl17.1.1 c6-7
1.4. Software Design Principles c4.2
2. Software Design Processes c3 c2,c7
2.1. High-Lewvel Design c5 cb
2.2. Detailed Design cl4
3. Software Design Qualities c4
3.1. Concurrency cl7
3.2. Control and Event Handling c21
3.3. Data Persistence c6,c16
3.4. Distribution of Components cl7
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3.5. Errors and Exception cll
Handling Fault Tolerance
3.6. Integration and cll, cl4,
Interoperability cl6
3.7. Assurance, Security and Safety c10-14
4. Recording Software Designs c1-3 c7-8
4.1. Model-Based Design c7.3 c5.5
4.2. Structural Design Descriptions c4-14 c7,c10 c4 c5.3
4.3. Bebavioral Design Descriptions | ¢15-24 c9-10 c5 c5.4
4.4. Design Patterns and Styles cl2 cl5 cl-2 c7.2
4.5. Specialized and Domain- c15
Specific Languages
4.6. Design Rationale cl6 cl2 c6.1
5. Software Design Strategies c3
and Methods
5.1. General Strategies cl3
5.2. Function-Oriented (or 9
Structured) Design
5.3. Data Centered Design c9 c5.4.1
5.4. Object-Oriented Design c10
5.5 User-Centered Design c9
5.6. Component-Based Design c25, c29 cll, cl6 cl6
5.7. Event-Driven Design c5.4.2
5.8. Aspect-Oriented Design c10 c31
5.9. Constraint-Based Design cll
5.10. Domain-Driven Design c13.6.2,

c18.3
5.11. Other Methods c18-21
6. Software Design Quality c7 c24
Analysis and Evaluation
6.1. Design Reviews and Audits c5.3
6.2. Quality Attributes c24
6.3. Quality Analysis and c24
Ewvaluation Techniques
6.4. Measures and Metrics c5, cl7 c24.5
6.5. Verification, Validation and c7-8
Certification

FURTHER READINGS

Brooks, The Design of Design [3*]

Brooks, one of the pioneers of software engi-
neering, provides a collection of essays and
case studies on all aspects of software design.
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CHAPTER 04

Software Construction

ACRONYMS
API Application
Programming Interface
ASIC Application-Specific
Integrated Circuit
BaaS Backend As A Service
CI Continuous Integration
COTS Commercial Off-The-Shelf
CSS Cascading Style Sheets
DSL Domain-Specific Language
DSP Digital Signal Processor
ESB Enterprise Service Bus
FPGA Field Programmable
Gate Array
GPU Graphic Processing Unit
GUI Graphical User Interface
HTMLS5 Hypertext Markup
Language Version 5
IDE Integrated Development
Environment
JEE Jakarta Enterprise Edition
MDA Model-Driven Architecture
NPM Node Package Manager
OMG Object Management Group
PIM Platform Independent Model
POSIX Portable Operating
System Interface
PSM Platform-Specific Model
SDK Software Development Kit

TDD Test-Driven Development
UML Unified Modeling Language

WYSIWYG | What You See Is
What You Get

INTRODUCTION

Software construction refers to the detailed cre-
ation and maintenance of software through
coding, verification, unit testing, integration
testing and debugging.

The software construction knowledge area
(KA) is linked to all the other KAs, but it is
most strongly linked to the Software Design
and Software Testing KAs because the soft-
ware construction process involves signifi-
cant design and testing. The process uses the
design output and provides an input to testing
(“design” and “testing” in this case referring
to the activities, not the KAs). Boundaries
among design, construction and testing (if
any) vary depending on the software life cycle
processes used in a project.

Although some detailed design might be
performed before construction, much design
work is performed during construction. Thus,
the Software Construction KA is closely
linked to the Software Design KA.

Also, throughout construction, software
engineers both unit-test and integration-test
their work. Thus, the Software Construction
KA is closely linked to the Software Testing
KA as well.

The Software Construction KA is also
related to configuration management, quality,
project management and computing, and thus
to the relevant KAs.

4-1
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First, software construction typically pro-
duces the highest number of configuration
items that need to be managed in a software
project (e.g., source files, documentation, test
cases). Thus, the Software Construction KA is
closely linked to the Software Configuration
Management KA.

Second, while quality is important in all
the KAs, code is a software project’s ulti-
mate deliverable, and code is produced
during construction. Thus, the Software
Quality KA is closely linked to the Software
Construction KA.

Third, while project management involves
various software development tasks, soft-
ware construction typically produces the
most deliverables of a software project.
Thus, the Software Construction KA is
closely linked to the Software Engineering
Management KA.

Fourth, since software construction
requires knowledge of algorithms and coding
practices, this KA is closely related to the
Computing Foundations KA, which concerns
the computer science foundations supporting
software product design and construction.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONSTRUCTION

The breakdown of topics for the Software
Architecture KA is shown in Figure 4-1.

1. Software Construction Fundamentals

Software construction fundamentals include
the following:

* Minimizing complexity

* Anticipating and embracing change
* Constructing for verification

* Reusing assets

* Applying standards in construction

The first four concepts apply to design as
well as to construction. The following sections
define these concepts and describe how they
apply to construction.

1.1. Minimizing Complexity [1,c2,c3,
c7-9, c24,c27,c28,c3,1,c32, c34]

All people have limited ability to hold com-
plex structures and information in their
working memories, especially over long
periods. This greatly influences how people
convey intent to computers and drives one
of the key goals in software construction —
to minimize complexity. The need to reduce
complexity applies to essentially every aspect
of software construction and is particularly
critical to testing software constructions.

Several types of complexity can affect
software construction. Tools can be used to
manage different aspects of the complexity of
software components and their construction.
For example, cyclomatic complexity is a static
analysis measure of how difficult code is to
test and understand. The tool, developed by
Thomas J. McCabe, Sr., in 1976, calculates
the number of linearly independent paths
through a program’s source code. Ideally,
there should be at least that number of test
cases. Other examples are tools like Make,
which can build an application, or inte-
grated development environments (IDEs) for
entering, editing and compiling code. These
tools help manage the complexity of the con-
struction process.

In software construction, reduced com-
plexity is achieved by creating simple and
readable code rather than clever code. This is
accomplished by using standards (see section
3.1.5, Standards in Construction), modular
design (see section 3.1, Construction Design)
and numerous other specific techniques (see
section 3.3, Coding). Construction-focused
quality techniques also support this (see sec-
tion 3.6, Construction Quality).

1.2. Anticipating and Embracing Change
[1-c3-c5, c24, 31,
c32,c34,2-c1,c3,c9,3-c1]

Most software changes over time, and
anticipating change drives many aspects of
software construction; changes in the envi-
ronments in which software operates also
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Figure 4.1. Breakdown of Topics for the Software Construction KA

affect software in diverse ways. Anticipating
change helps software engineers build
extensible software, enhancing a software
product without disrupting the underlying
structure. Anticipating change is supported
by many specific techniques (see section
3.3, Coding).

Moreover, today’s business environments
require many organizations to deliver and
deploy software more frequently, faster
and more reliably. Anticipating specific,

necessary changes can be difficult, so soft-
ware engineers should be careful to build
flexibility and adaptability into the soft-
ware to incorporate changes with less difhi-
culty. These software teams should embrace
change by adopting agile development,
practicing DevOps, and by adopting con-
tinuous delivery and deployment practices.
Such practices align the software develop-
ment process and management with an evo-
lutionary environment.
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1.3. Constructing for Verification [1-c8,
c20-c23, c31, c34]

Constructing for verification builds software in
such a way that faults can be readily found
by the software engineers writing the soft-
ware as well as by the testers and users during
independent testing and operational activ-
ities. Specific techniques that support con-
structing for verification include following
coding standards to support code reviews
and unit testing, organizing code to sup-
port automated testing, restricting the use of
complex or difficult-to-understand language
structures, and recording software behaviors
with logs.

1.4. Reusing Assets [2-c15]
Reuse means using existing assets to solve dif-
ferent problems. In software construction,
typical assets that are reused include frame-
works, libraries, modules, components, source
code and commercial off-the-shelf (COTS)
assets. Reuse has two closely related facets:
construction for reuse and construction with reuse.
The former means creating reusable software
assets, whereas the latter means reusing soft-
ware assets to construct a new solution. Reuse
often transcends project boundaries, which
means reused assets can be constructed in
other projects or organizations.

1.5. Applying Standards in Construction [1-c4]

Applying external or internal development
standards during construction helps achieve
a project’s efficiency, quality and cost objec-
tives. Specifically, the choices of allowable
programming language subsets and usage
standards are important aids in achieving
higher security.

Standards that directly affect construction
issues include the following:

* Communication methods (e.g., standards
for document formats and content)

* Programming languages (e.g., standards
for languages like Java and C++)

* Coding standards (e.g., standards
for naming conventions, layout and
indentation)

* Exception handling policies (e.g., stan-
dards for the information included in
exceptions and the way how exceptions
are handled after catching)

* Platforms (e.g., interface standards for
operating system calls)

* Tools (e.g., diagrammatic standards
for notations like UML - Unified
Modeling Language)

Use of external standards: Construction
depends on external standards for construction
languages, construction tools, technical inter-
faces and interactions between the Software
Construction KA and other KAs. Standards
come from numerous sources, including hard-
ware and software interface specifications
(e.g., Object Management Group (OMG)) and
international organizations (e.g., the Institute
of Electrical and Electronics Engineers
(IEEE), the International Organization for
Standardization (ISO)).

Use of internal standards: Standards may
also be created on an organizational basis at the
corporate level or for use on specific projects.
These standards support coordinating group
activities, minimizing complexity, anticipating
change and constructing for verification.

2. Managing Construction

2.1. Construction in Life Cycle Models
[1-c2,c3,c27,¢c29,2-c3,c7,3-cl]

Numerous models have been created to
describe the development of software; some
emphasize construction more than others.
Some models are more linear from the
construction viewpoint, such as the waterfall
and staged-delivery life cycle models. These
models treat construction as an activity that
occurs only after the completion of significant
prerequisite work, including detailed require-
ments work, extensive design work and detailed
planning. The more linear approaches empha-
size the activities that precede construction



(requirements and design) and create more
distinct separations between activities. In
these models, construction’s main emphasis
might be coding.

Other models, such as evolutionary proto-
typing and agile development, are more iter-
ative. These approaches treat construction as
an activity that occurs concurrently with or
overlaps other software development activi-
ties (including requirements, design and plan-
ning). These approaches mix design, coding
and testing activities, and they often treat the
combination of activities as construction (see
the Software Engineering Management and
Software Process KAs).

The practices of continuous delivery and
deployment further mix coding, testing,
delivery and deployment activities. In these
practices, software updates made during con-
struction activities are continuously delivered
and deployed into the production environ-
ment. The whole process is fully automated
by a deployment pipeline that consists of var-
ious testing and deployment activities.

Consequently, what is considered con-
struction depends on the life cycle model
used. In general, software construction is
mostly coding and debugging, but it also
involves construction planning, detailed
design, unit testing, integration testing and
other activities.

[1-c3, c4,
c21, c27-c29]

2.2. Construction Planning

The choice of construction method is a key
aspect of the construction planning activity. This
choice affects the extent to which construc-
tion prerequisites are performed, the order in
which they are performed and the degree to
which they should be completed before con-
struction work begins.

The approach to construction affects the
project team’s ability to reduce complexity,
anticipate change and construct for verifica-
tion. Each objective may also be addressed at
the process, requirements and design levels,
but the choice of construction method will
influence them.
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Construction planning also defines the
order in which components are created and
integrated, the integration strategy (for
example, phased or incremental integration),
the software quality management processes,
the allocation of task assignments to specific
software engineers, and other tasks, according
to the chosen method.

2.3. Construction Measurement — [1-c25, c28]
Numerous construction activities and arti-
facts can be measured, including code devel-
oped, modified, reused, and destroyed; code
complexity; code inspection statistics; fault-fix
and fault-find rates; effort; and scheduling.
These measurements can be useful for man-
aging construction, ensuring quality during
construction and improving the construc-
tion process, among other uses (see the
Software Engineering Process KA for more
on measurement).

2.4. Managing Dependencies [2-c25]
Software products often heavily rely on depen-
dencies, including internal and external (com-
mercial or open-source) dependencies, which
allow developers to reuse common functional-
ities instead of reinventing the wheel and sub-
stantially improve developers’ productivity. In
addition, package managers (e.g., Maven in
Javaand NPM in JavaScript) are widely used to
automate the process of installing, upgrading,
configuring and removing dependencies.

The direct and indirect dependencies of
software products constitute a dependency
supply chain network. Any dependency
in the supply chain network can intro-
duce potential risk to software products and
should be managed by developers or tools.
Unnecessary dependencies should be avoided
to improve build efficiency. License conflicts
between dependencies and software prod-
ucts should be avoided to reduce legal risk.
Propagation of dependencies’ defects or vul-
nerabilities into software products should
be avoided to improve the quality of soft-
ware products. Regulations and monitoring
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mechanisms should be developed to pre-
vent developers from introducing untrusted
external dependencies.

3. Practical Considerations

Construction is an activity in which the soft-
ware engineer often has to deal with some-
times chaotic, changing and even conflicting
real-world constraints. Because of real-world
constraints, practical considerations drive
construction more than some other KAs, and
software engineering is perhaps most craft-
like in the construction activities compared
with other activities.
3.1. Construction Design  [1-c3, c5, c24,2-c7]
Some projects allocate considerable design
activity to construction, whereas others allo-
cate design to a phase explicitly focused on
design. Regardless of the exact allocation,
some detailed design work occurs at the con-
struction level, and that design work is dic-
tated by constraints imposed by the real-world
problem the software addresses.

Just as construction workers building a
physical structure must make small modifi-
cations for unanticipated gaps in the builder’s
plans, software construction workers must
make small or large modifications to flesh out
software design details during construction.

The details of the design activity at the
construction level are essentially the same as
described in the Software Design KA, but
they are applied at a smaller scale to algo-
rithms, data structures and interfaces.
3.2. Construction Languages [1-c4]
Construction languages include all forms
of communication by which a human can
specify an executable solution to a problem.
Consequently, construction languages and
their implementations (e.g., compilers) can
affect software quality attributes such as per-
formance, reliability and portability. As a
result, they can seriously contribute to secu-
rity vulnerabilities.

The simplest construction language is a
configuration language, in which software
engineers choose from a limited set of pre-
defined options to create new or custom
software installations. The text-based config-
uration files used in both the Windows and
Unix operating systems are examples of this,
and some program generators’ menu-style
selection lists constitute another example of a
configuration language.

Toolkit languages are used to build appli-
cations from elements in toolkits (integrated
sets of application-specific reusable parts);
they are more complex than configuration
languages. Toolkit languages may be explic-
itly defined as application programming lan-
guages, or the applications might be implied
by a toolkit’s set of interfaces.

Scripting languages are commonly used
application programming languages. In some
scripting languages, scripts are called bazch
files or macros.

Programming languages are the most flex-
ible construction languages. They also contain
the least amount of information about specific
application areas and development processes.
Therefore, they require the most training and
skill to use effectively. The choice of program-
ming language can greatly affect the like-
lihood of vulnerabilities being introduced
during coding (e.g., unsafe use of C and C++
library functions is questionable from a secu-
rity viewpoint).

Three general notations are used for pro-
gramming languages:

* Linguistic (e.g., C/C++, Java)
* Formal (e.g., Event-B)
* Visual (e.g., MATLAB)

Linguistic notations are distinguished in
particular by the use of textual strings to rep-
resent complex software constructions. The
combination of textual strings in patterns may
have a sentence-like syntax. Properly used,
each string should have a strong semantic
connotation providing an immediate intui-
tive understanding of what happens when the
software construction is executed.



Formal notations rely less on intuitive,
everyday meanings of words and text strings
and more on definitions backed by precise,
unambiguous and formal (or mathematical)
definitions. Formal construction notations
and methods are at the semantic base of most
system programming notations, where accu-
racy, time behavior and testability are more
important than ease of mapping into natural
language. Formal constructions also use pre-
cisely defined ways of combining symbols that
avoid the ambiguity of many natural language
constructions.

Visual notations rely much less on the
textual notations of linguistic and formal
construction and more on direct visual inter-
pretation and placement of visual entities that
represent the underlying software. Visual
construction is somewhat limited by the dif-
ficulty of making “complex” statements using
only the arrangement of icons on a display.
However, these icons can be powerful tools
in cases where the primary programming task
is to build and “adjust” a visual interface to a
program, the detailed behavior of which has
an underlying definition.

Nowadays, domain-specific languages
(DSLs) are widely used to build domain-spe-
cific applications. Unlike a general-pur-
pose programming language, such as C/C++
or Java, a DSL is designed for the applica-
tion construction of a particular domain.
Therefore, a DSL usually can be defined
based on a higher level of abstraction of the
target domain and can be optimized for a
specific class of problems. Furthermore, A
DSL usually can be expressed by visual nota-
tions defined by domain-specific concepts
and rules.
3.3. Coding [1-c5-c19, c25-c26]
The following considerations apply to the
software construction coding activity:

* Techniques for creating understandable
source code, including naming conven-
tions and source code layout

e Use of classes, enumerated types,
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variables, named constants and other
similar entities
* Use of control structures

* Handling of error conditions — both
anticipated and exceptional (e.g., input
of bad data)

* Prevention of code-level security
breaches (e.g., buffer overflows or array
index bounds)

* Resource use through use of exclusion
mechanisms and discipline in accessing
serially reusable resources, including
threads and database locks

* Source code organization into state-
ments, routines, classes, packages or
other structures

* Code documentation

* Code tuning
3.4. Construction Testing [1-c22, 23, 2-c8]
Construction involves two forms of testing,
which are often performed by the software
engineer who wrote the code: unit testing and
integration testing.

Construction testing aims to reduce
the gap between when faults are inserted
into the code and when those faults are
detected, thereby reducing the cost incurred
to fix them. In some instances, test cases are
written after the code has been written. In
other instances, test cases might be created
before code is written.

Construction testing typically involves
a subset of the various types of testing,
described in the Software Testing KA. For
instance, construction testing does not typ-
ically include system testing, alpha testing,
beta testing, stress testing, configuration
testing, usability testing, or other more spe-
cialized testing.

Two standards have been published on
construction testing: IEEE Standard 829-
2008, “IEEE Standard for Software Test
Documentation,” and “IEEE Standard for
Software Unit Testing.”

See sections 2.1.1 and 2.1.2 in the Software
Testing KA for more specialized refer-
ence material.
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3.5. Reuse in Construction [2-c15,c16]
Reuse in construction includes both construc-
tion for reuse and construction with reuse.

Construction for reuse creates software
with the potential to be reused in the future
for the present project or for other projects
with a broad-based, multisystem perspec-
tive. Construction for reuse is usually based
on variability analysis and design. To avoid
the problem of code clones, developers should
encapsulate reusable code fragments into
well-structured libraries or components.

The tasks related to software construc-
tion for reuse during coding and testing are
as follows:

* Variability implementation with mech-
anisms such as parameterization, condi-
tional compilation and design patterns

* Variability encapsulation to make
the software assets easy to configure
and customize

* Testing the variability provided by the
reusable software assets

* Description and publication of reusable
software assets

Construction with reuse means creating
new software by reusing existing software
assets. 'The most popular reuse method is
to reuse code from the libraries provided by
the language, platform, tools or an organi-
zational repository. Aside from these, many
applications developed today use third-party
open-source libraries. In addition, reused
and off-the-shelf software often have the
same (or better) quality requirements as
newly developed software (e.g., security level
requirements).

The tasks related to software construc-
tion with reuse during coding and testing are
as follows:

* Selecting reusable units, databases, test
procedures or test data

* Evaluating code or test reusability

* Integrating reusable software assets into
the current software

* Reporting reuse information on new
code, test procedures or test data

The forms of reusable software assets are
not limited to software artifacts that must be
locally integrated. Nowadays, cloud services
that provide various services through online
interfaces such as RESTful application pro-
gramming interfaces (APIs) are widely used in
applications. In the new cloud service model
Baa$ (backend as a service), applications del-
egate their backend implementations to cloud
service providers — for example, utilities such
as authentication, messaging and storage are
usually provided by cloud providers.

Reuse is best practiced systematically,
according to a well-defined, repeatable pro-
cess. Systematic reuse can enable signifi-
cant software productivity, quality and cost
improvements. Systematic reuse is supported
by methodologies such as software product
line engineering and various software frame-
works and platforms. Widely used frameworks
such as Spring provide reusable infrastruc-
tures for enterprise applications so soft-
ware teams can focus on application-specific
business logic. Commercial platforms pro-
vide various reusable frameworks, libraries,
components and tools to support application
development to build their ecosystems.

[1-c8, c20-c25,
2-c8, c24]

3.6. Construction Quality

In addition to faults occurring during require-
ments and design activities, faults introduced
during construction can cause serious quality
problems (e.g., security vulnerabilities). These
include not only faults in security function-
ality but also faults elsewhere that allow
bypassing of the security functionality or
create other security weaknesses or violations.

Numerous techniques exist to ensure the
quality of code as it is constructed. The pri-
mary techniques used to ensure construction
quality are:

* Unit testing and integration testing (see
section 3.4, Construction Testing)



* Test-first development (see section 6.1.2
in the Software Testing KA)

* Use of assertions and defensive
programming

* Debugging

* Inspections

* Technical reviews, including securi-
ty-oriented reviews (see section 2.3 in the
Software Quality KA)

* Static analysis (see section 2.2.1 of the
Software Quality KA)

The specific technique or techniques
selected depend on the software constructed
and on the skill set of the software engi-
neers performing the construction activities.
Programmers should know good practices and
common vulnerabilities (e.g., from widely rec-
ognized lists about common vulnerabilities).
Automated static code analysis for security
weaknesses is available for several common
programming languages.

Construction quality activities are dif-
ferentiated from other quality activities by
their focus. These activities focus on arti-
facts that are closely related to code — such
as detailed design — as opposed to other
artifacts that are less directly connected to
the code, such as requirements, high-level
designs and plans.
3.7. Integration [1-c29,2-c8, 3-c11]
During construction, a key activity is inte-
grating individually constructed routines,
classes, components and subsystems into a
single system. In addition, a particular soft-
ware system may need to be integrated with
other software or hardware systems.

Concerns related to construction integra-
tion include planning the sequence in which
components are integrated, identifying what
hardware is needed, creating scaffolding to
support interim versions of the software,
determining the degree of testing and quality
work performed on components before they
are integrated, and determining points in the
project at which interim versions of the soft-
ware are tested.
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Programs can be integrated by means
of either the phased or the incremental
approach. Phased integration, also called 4ig
bang integration, entails delaying the inte-
gration of component software parts until
all parts intended for release in a version are
complete. Incremental integration is thought
to offer many advantages over the traditional
phased integration (e.g., easier error loca-
tion, improved progress monitoring, earlier
product delivery and improved customer rela-
tions). In incremental integration, the devel-
opers write and test a program in small pieces
and then combine the pieces one at a time.
Additional test infrastructure, including, for
example, stubs, drivers and mock objects, is
usually needed to enable incremental integra-
tion. In addition, by building and integrating
one unit at a time (e.g., a class or component),
the construction process can provide early
feedback to developers and customers.

Today, continuous integration (CI) has
been widely adopted in practice. A software
team using CI integrates its work frequently,
leading to multiple integrations per day. CI
is usually automated by a pipeline that builds
and tests each integration to detect errors and
provide fast feedback.

3.8. Cross-Platform Development and

Migration [4-c]
Some applications, such as mobile applica-
tions, heavily rely on specific platforms (e.g.,
Apple, Android), which wusually include
operating systems, development frameworks
and APIs. To support multiple platforms,
the developers need to develop and build an
application separately for each target plat-
form using the corresponding program lan-
guage and software development kit (SDK).
However, multi-platform development in this
way requires more time and cost and might
cause different user experiences between dif-
ferent implementations.

Cross-platform  development allows the
developers to develop an application using a
universal language and export it to various
platforms. This usually can be done in two
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ways for mobile applications. One way is to
generate native applications using tools that
can compile the universal language into plat-
form-specific formats. The other is to develop
hybrid applications that combine web appli-
cations developed using languages like hyper-
text markup language version 5 (HTMLS5)
and cascading style sheets (CSS) and native
containers or wrappers for various opera-
tions systems.

For applications that are not developed in
this way, developers may consider migrating
the applications from one platform to another.
'The migration usually involves translation of
different programming languages and plat-
form-specific APIs and can be partially auto-
mated by tools.

4. Construction Technologies

4.1. API Design and Use [5-c7]
An API is a set of signatures that are exported
and available to the users of a library or a
framework to write their applications. Besides
signatures, an API should always include
statements about the program’s effects and/or
behaviors (i.e., its semantics).

API design should make the API easy to
learn and memorize, lead to readable code, be
difficult to misuse, be easy to extend, be com-
plete, and maintain backward compatibility.
As the APIs usually outlast their implemen-
tations for a widely used library or framework,
an API should be straightforward and stable,
to facilitate client application development
and maintenance.

API use involves selecting, learning,
testing, integrating and possibly extending
APIs provided by a library or framework (see
section 3.5, Reuse in Construction).

For online interfaces such as RESTful
APIs, open standards such as OpenAPI play
an important role. OpenAPI defines a stan-
dard, language-agnostic interface to HTTP
APIs and supports the automatic generation
of server-side and client-side code, covering
popular languages such as Java, JavaScript,
Python, etc. At the same time, the API-first

approach has been widely used, which empha-
sizes designing and building the APIs of an
application first. In practice, the API-first
approach is usually accomplished by using an
API description language to establish a con-
tract for how the API is supposed to behave.

4.2. Object-Oriented Runtime Issues  [1-c6, c7]
Object-oriented languages support run-
time mechanisms, including polymorphism
and reflection. These runtime mechanisms
increase the flexibility and adaptability of
object-oriented programs.

Polymorphism is a language’s ability to
support general operations without knowing
until runtime what kind of concrete objects
the software will include. Because the pro-
gram does not know the types of the objects
in advance, the exact behavior is determined
at runtime (called dynamic binding).

Reflection is a program’s ability to observe
and modify its structure and behavior at run-
time. For example, reflection allows inspection
of classes, interfaces, fields and methods at
runtime without knowing their names at com-
pile time. It also allows instantiation of new
objects at runtime and invocation of methods
using parameterized class and method names.

4.3. Parameterization, Templates, and Generics

[6-c1]

Parameterized types, also known as generics
(Ada, Java, Eiffel) and zemplates (C++), enable
a type or class definition without specifying
all the other types used. The unspecified types
are supplied as parameters at the point of use.
Parameterized types provide a third way
(besides class inheritance and object compo-
sition) to compose behaviors in object-ori-
ented software.

4.4. Assertions, Design by Contract, and

Defensive Programming [1-c8, c9]
An assertion is an executable predicate placed
in a program — usually a routine or macro —
that performs runtime checks of the program.



Assertions are especially useful in high-reli-
ability programs. They enable programmers to
more quickly flush out mismatched interface
assumptions, errors that creep in when code is
modified, and other problems. Assertions are
typically compiled into the code at develop-
ment time and are later compiled out of the
code so they don’t degrade the performance.

Design by contract is a development approach
in which preconditions and postconditions are
included for each routine. When precondi-
tions and postconditions are used, each rou-
tine or class is said to form a contract with
the rest of the program. A contract precisely
specifies the semantics of a routine and thus
helps clarify its behavior. Design by contract
is thought to improve the quality of software
construction.

Defensive programming means to protect a
routine from being broken by invalid inputs.
Common ways to handle invalid inputs
include checking the values of all the input
parameters and deciding how to handle bad
inputs. Assertions are often used in defensive
programming to check input values.

4.5. Error Handling, Exception Handling, and
Fault Tolerance [1-c8, c9]

How errors are handled affects software’s
ability to meet requirements related to correct-
ness, robustness and other nonfunctional attri-
butes. Assertions are sometimes used to check
for errors. Other error-handling techniques —
such as returning a neutral value, substituting
the next piece of valid data, logging a warning
message, returning an error code or shutting
down the software — are also used.
Exceptions are used to detect and process
errors or exceptional events. The basic struc-
ture of an exception is as follows: A routine
uses throw to throw a detected exception,
and an exception-handling block will cazch
the exception in a #ry-catch block. The try-
catch block may process the erroneous condi-
tion or return control to the calling routine.
Exception-handling policies should be care-
tully designed following common principles,
such as including in the exception message
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all information that led to the exception,
avoiding empty catch blocks, knowing the
exceptions the library code throws, perhaps
building a centralized exception reporter,
and standardizing the program’s use of
exceptions.

Fault tolerance is a collection of techniques
that increase software reliability by detecting
errors and then recovering from them or con-
taining their effects if recovery is not possible.
The most common fault tolerance strate-
gies include backing up and retrying, using
auxiliary code and voting algorithms, and
replacing an erroneous value with a phony
value that will have a benign effect.

4.6. Executable Models [7]

Executable models abstract away the details of
specific programming languages and deci-
sions about the software’s organization.
Different from traditional software models,
a specification built in an executable mod-
eling language like xUML (executable UML)
can be deployed in various software environ-
ments without change. Furthermore, an exe-
cutable-model compiler (transformer) can
turn an executable model into an implemen-
tation using a set of decisions about the target
hardware and software environment. Thus,
constructing executable models is a way of
constructing executable software.

Executable models are one foundation
supporting the model-driven architecture
(MDA) initiative of the OMG. An executable
model is a way to specify a platform-indepen-
dent model (PIM); a PIM is a model of a
solution to a problem that does not rely on any
implementation technologies. Then a plat-
form-specific model (PSM), which is a model
that contains the details of the implementa-
tion, can be produced by weaving together the
PIM and the platform on which it relies.

4.7. State-Based and Table-Driven

Construction Techniques

[1-c18]

State-based programming, or automata-based
programming, is a programming technology
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that uses finite-state machines to describe
program behaviors. A state machine’s transi-
tion graphs are used in all stages of software
development (specification, implementation,
debugging and documentation). The main
idea is to construct computer programs in the
same way technological processes are auto-
mated. State-based programming is usually
combined with object-oriented programming,
forming a new composite approach called
state-based, object-oriented programming.

A table-driven method is a schema that
uses tables to display information rather
than convey information with logic state-
ments (such as if and case). When used in
appropriate  circumstances, table-driven
code is simpler than complicated logic and
easier to modify. When using table-driven
methods, the programmer addresses two
issues: what information to store in the table
or tables and how to efficiently access infor-
mation in the table.

4.8. Runtime Configuration and

Internationalization [1-c3,c10]
To achieve more flexibility, a program is
often constructed to support its variables’ late
binding time. For example, runtime configu-
ration binds variable values and program set-
tings when the program is running, usually by
updating and reading configuration files in a
just-in-time mode.

Internationalization is the technical activity
of preparing a program, usually interactive
software, to support multiple locales. The cor-
responding activity, /localization, modifies a
program to support a specific local language.
Interactive software may contain dozens or
hundreds of prompts, status displays, help
messages, error messages and so on. The
design and construction processes should
accommodate string and character set issues,
including which character set is used, what
kinds of strings are used, how to maintain the
strings without changing the code and how to
translate the strings into different languages
with minimal impact on the processing code
and the user interface.

4.9. Grammar-Based Input Processing [1,8]
Grammar-based —input  processing  involves
syntax analysis, or parsing, of the input token
stream. It involves the creation of a data struc-
ture (called a parse tree or syntax tree) repre-
senting the input data. The inorder traversal
of the parse tree usually gives the expres-
sion just parsed. Next, the parser checks the
symbol table for programmer-defined vari-
ables that populate the tree. After building
the parse tree, the program uses it as an input
to the computational processes.
4.10.Concurrency Primitives [9-c6]
A synchronization primitive is a programming
abstraction provided by a programming lan-
guage or the operating system that facilitates
concurrency and synchronization. Well-
known concurrency primitives include sema-
phores, monitors and mutexes.

A semaphore is a protected variable or
abstract data type that provides a simple
but useful abstraction for controlling access
to a common resource by multiple processes
or threads in a concurrent programming
environment.

A monitor is an abstract data type that pres-
ents a set of programmer-defined operations
executed with mutual exclusion. A monitor
contains the declaration of shared variables
and procedures or functions that operate on
those variables. The monitor construct ensures
that only one process at a time is active in
the monitor.

A mutex (mutual exclusion) is a synchro-
nization primitive that grants exclusive access
to a shared resource by only one process or
thread at a time.
4.11.Middleware [5-c1, 8-c8]
Middleware is a broad classification for soft-
ware that provides services above the operating
system layer yet below the application pro-
gram layer. Middleware can provide runtime
containers for software components to provide
message passing, persistence and a transparent



location across a network. Middleware can
be viewed as a connector between the com-
ponents using the middleware. Modern mes-
sage-oriented middleware usually provides an
enterprise service bus (ESB) that supports ser-
vice-oriented interaction and communication
among multiple software applications.

4.12. Construction Methods for Distributed and
Cloud-Based Software  [2-c17,¢18,9-c2]

A distributed system is a collection of physically
separate, possibly heterogeneous computer
systems networked to provide the users with
access to the resources the system maintains.
The construction of distributed software is
distinguished from traditional software con-
struction by issues such as parallelism, com-
munication and fault tolerance.

Distributed programming typically falls
into several basic architectural categories:
client-server, three-tier architecture, n-tier
architecture, distributed objects, loose cou-
pling or tight coupling (see section 5.6 in the
Computing Foundations KA and section 2.2
in the Software Architecture KA).

Nowadays, more applications are migrated
to the cloud. Cloud-based software often adopts
microservice architecture and container-based
deployment. In addition to traditional dis-
tributed software issues, cloud-based soft-
ware developers also need to consider cloud
infrastructure issues such as use of an API
gateway, service registration and discovery.

Distributed systems based on n-tier/ser-
vice-oriented architectures usually rely on
ACID distributed transactions for the imple-
mentation of transactions involving multiple
distributed components. In contrast, cloud-
based microservices cannot enforce distributed
transactions consistency, and use some form of
SAGA-based eventual consistency, initially
intended for long-running transactions.

4.13. Constructing Heterogeneous Systems  [8-c9]

Heterogeneous systems consist of various special-
ized computational units of different types,
such as Graphic Processing Units (GPUs) and
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Digital Signal Processors (DSPs), micro-
controllers and peripheral processors. These
computational units are independently con-
trolled and communicate with one another.
Embedded systems are typically heteroge-
neous systems.

The design of heterogeneous systems may
require combining several specification lan-
guages to design different system parts (hard-
ware/software codesign). The key issues include
multilanguage validation, co-simulation and
interfacing.

During the hardware/software codesign,
software and virtual hardware development
proceed concurrently through stepwise decom-
position. The hardware part is usually simulated
in field programmable gate arrays (FPGAs)
or application-specific integrated circuits
(ASICs). The software part is translated into a
low-level programming language.

4.14. Performance Analysis and Tuning
[1-¢25, c26]

Code efficiency — determined by architec-
ture, detailed design decisions, and data struc-
ture and algorithm selection — influences
execution speed and size. Performance analysis
investigates a program’s behavior using infor-
mation gathered as the program executes to
identify possible hot spots in the program to
be improved.

Code runing, which improves performance
at the code level, modifies code to make it run
more efficiently. Code tuning usually involves
only small changes that affect a single class,
a single routine or, more commonly, a few
lines of code. A rich set of code tuning tech-
niques is available, including those for tuning
logic expressions, loops, data transformations,
expressions and routines. Using a low-level
language is another common technique for
improving hot spots in a program.

4.15. Platform Standards [4-c, 8-c10, 9-c1]
Platform standards enable programmers to
develop portable applications that can be exe-
cuted in compatible environments without
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changes. Platform standards usually involve
standard services and APIs that compat-
ible platform implementations must use.
Typical examples of platform standards are
Jakarta Enterprise Edition (JEE); the por-
table operating system interface (POSIX)
standard for operating systems, which rep-
resents a set of standards implemented pri-
marily for Unix-based operating systems;
and HTMLS5, which defines the standards
for developing web applications that can
run on different environments (e.g., Apple

i0S, Android).

4.16. Test-First Programming [1-c22,2-c8]
Test-first programming (also known as TDD -
Test-Driven Development) is a popular devel-
opment style in which test cases are written
before any code. These test cases, when applied
to the current code base, will fail. Code is then
written that will allow the test cases to pass.
At that time, the new code and associated
parts of the project can be refactored and opti-
mized. Test-first programming can usually
detect defects earlier and correct them more
easily than traditional programming styles.
Furthermore, writing test cases first forces
programmers to think about requirements and
design before coding, thus exposing require-
ments and design problems sooner.

4.17. Feedback Loop for Construction
[3-c3, c16]

Early and continuous feedback for the
construction activity is one of the most
important advantages of agile development
and DevOps. Agile development provides
early feedback for construction through fre-
quent iterations in the development process.
DevOps provides even faster feedback from
the operation, allowing the developers to
learn how well their code performs in pro-
duction environments. This fast feedback is
achieved through techniques and practices
in the DevOps pipeline, such as automated
building and testing, canary release, and
A/B testing.

5. Software Construction Tools

5.1. Development Environments [1-c30]
A development environment, or integrated
development environment (IDE), provides
comprehensive facilities to programmers for
software construction by integrating a set of
development tools. The programmers’ choice
of development environment can affect soft-
ware construction efficiency and quality.

Besides basic code editing functions,
modern IDEs often offer other features, like
compilation and error detection within the
editor, integration with source code control,
build/test/debugging tools, condensed or out-
line views of programs, automated code trans-
forms, and support for refactoring.

Nowadays, cloud-based development envi-
ronments are available in public or private
cloud services. These environments can pro-
vide all the features of modern IDEs and
even more (e.g., containerized building and
deployment), powered by the cloud.

Moreover, modern IDEs are often equipped
with Al-assisted programming which is
boosted by the recent advances in Large
Language Models (LLMs). With the support
a programmer can define a function in pseudo-
code comments or outline its implementa-
tion as a prompt for an LLM to generate or
complete the code. The programmer lets the
LLM complete many of the details, but still
reviews the generated code and integrates it
into their project.

5.2. Visual Programming and Low-Code/Zero-
Code Platforms [1-c30]

Visual programming allows users to create pro-
grams by manipulating visual program ele-
ments graphically. As a visual programming
tool, a GUI (graphical user interface) builder
enables the developer to create and main-
tain GUIs in a WYSIWYG (what you see
is what you get) mode. A GUI builder usu-
ally includes a visual editor that enables the
developer to design forms and windows and
manage the layout of the widgets with drag,



drop and parameter setting features. Some
GUI builders can automatically generate the
source code corresponding to the visual GUI
design. Because GUI applications usually
follow the event-driven style (in which events
and event handling determine the program
flow), GUI builder tools usually provide code
generation assistants, which automate the
most repetitive tasks required for event han-
dling. The supporting code connects widgets
with the outgoing and incoming events that
trigger the functions providing the application
logic. Some modern IDEs provide integrated
GUI builders or GUI builder plug-ins. There
are also many stand-alone GUI builders.

Visual programming and other rapid appli-
cation development tools have evolved into
low-code/zero-code platforms. These platforms
allow developers to build complete applica-
tions visually through a drag-and-drop inter-
face and with minimal hand-coding. They
are usually based on the principles of mod-
el-driven design, visual programming and
code generation. The difference between low-
code development and zero-code development
lies in hand-coding; the former requires a
little hand-coding, whereas the latter requires
practically none.

5.3. Unit Testing Tools [1-c22,2-c8]
Unit testing verifies the functioning of soft-
ware modules in isolation from other sepa-
rately testable software elements (for example,
classes, routines, components). Unit testing
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is often automated. Developers can use unit
testing tools and frameworks to extend and
create an automated testing environment. For
example, the developer can code criteria into
the test with unit testing tools and frame-
works to verify the unit’s correctness under
various data sets. Each test is implemented
as an object, and a test runner runs the tests.
Failed test cases are automatically flagged and
reported during the test execution.

5.4. Profiling, Performance Analysis,
and Slicing Tools [1-¢25, c26]

Performance analysis tools are usually used to
support code tuning. The most common per-
formance analysis tools are profiling tools. An
execution profiling tool monitors the code
while it runs and records how often each
statement is executed or how much time the
program spends on each statement or exe-
cution path. Profiling the code while it runs
gives insight into how the program works,
where the hot spots are and where the devel-
opers should focus the code tuning efforts.

Program slicing involves computing the set
of program statements (i.e., the program slice)
that might affect the values of specified vari-
ables at some point of interest, which is called
a slicing criterion. Program slicing can be used
for locating error sources, program under-
standing and optimization analysis. Program
slicing tools compute program slices for var-
ious programming languages using static or
dynamic analysis methods.

MATRIX OF TOPICS VS. REFERENCE MATERIAL

McConnell,
2004 [1]
Sommerville,
2016 [2]

Mellor and Balcer,

2002 [7]
Null and Lobur,

Kim et al.,
2021 [3]
Heitkotter

et al., 2013 [4]
Clements
etal., 2010 [5]
Gamma et al.
1994 [6]

2018 [8]
Silberschatz
et al., 2008 [9]

1. Software Construction
Fundamentals
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Runtime Issues

1.1. Minimizing c2, 3, c7-¢9,
Complexity c24, c27, c28,
c31, c32, c34
1.2. Anticipating and c3-c5,c24, |cl,c3,| ¢l
Embracing Change c31,¢32,c34 | &9
1.3. Constructing for c8, c20-c23,
Verification c31, c34
1.4. Reuse c15
1.5. Standards in c4
Construction
2. Managing Construction
2.1. Construction in Life c2, ¢3, c27, c3, cl
Cycle Models c29 c7
2.2. Construction c3, ¢4, c21,
Planning c27-c29
2.3. Construction c25, c28
Measurement
2.4. Managing c25
Dependencies
3. Practical
Considerations
3.1. Construction Design c3, c5,c24 c7
3.2. Construction c4
Languages
3.3. Coding c5-c19,
c25-c26
3.4. Construction Testing c22,¢c23 c8
3.5. Reuse in Construction cl5,
cl6
3.6. Construction Quality c8, c20-c25 8,
c24
3.7. Integration c29 c8 cll
3.8. Cross-Platform
Development
and Migration
4. Construction
Technologies
4.1. API Design and Use c7
4.2. Object-Oriented c6, c7
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4.3. Parameterization, cl
Templates and Generics

4.4. Assertions, Design by c8, c9
Contract and Defensive

Programming

4.5. Error Handling, c3,c8
Exception Handling and

Fault Tolerance

4.6. Executable Models

4.7. State-Based and cl18
Table-Driven Construction
Techniques

4.8. Runtime c3,c10
Configuration and
Internationalization

4.9. Grammar-Based Input c5 c8
Processing

4.10. Concurrency cb
Primitives

4.11. Middleware cl c8

4.12. Construction cl7, c2
Methods for Distributed c18
and Cloud-Based Software

4.13. Constructing 9
Heterageneous Systems

4.14. Performance Analysis c25, c26
and Tuning

4.15. Platform Standards c c10 cl

4.16. Test-First c22 c8
Programming

4.17. Feedback Loop for c3,
Construction cl6

5. Software
Construction Tools

5.1. Development c30
Environments

5.2. Visual Programming c30
and Low-Code/Zero-
Code Platforms

5.3. Unit Testing Tools c22 c8

5.4. Profiling, Performance c25, c26
Analysis and Slicing Tools
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IEEE Std. 1517-2010: IEEE Standard for
Information Technology — Software Life Cycle
Processes — Reuse Processes, IEEE, 1999 [§].

This standard specifies the processes, activi-
ties, and tasks to be applied during each phase
of the software life cycle to enable a soft-
ware product to be constructed from reusable
assets. It covers the concept of reuse-based
development and the processes of construc-
tion for reuse and construction with reuse.

ISO/IEC 12207:2008: Information Technology
Software  Life  Cycle ISO/
IEC, 2008 [9].

Processes,

This standard defines a series of software
development processes, including software
construction process, software integration
process, and software reuse process.

Martin Kent  Beck.  Refactoring:
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Education, Inc.
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CHAPTER 05

Software Testing

ACRONYMS

Al Artificial Intelligence

API Application Program Interface

ARINC | Aeronautical Radio Incorporated

ATDD | Acceptance Test-Driven
Development

CMMI | Capability Maturity Model
Integration

CSS Cascading Style Sheets

DICOM | Digital Imaging and
Communications in Medicine

DL Deep Learning

DU Definition and Use

EBSE Evidence-Based Software
Engineering

ETSI European Telecommunications
Standards Institute

FHIR Fast Healthcare Interoperability
Resources

GDPR General Data Protection
Regulation

GPS Global Positioning System

GUI Graphical User Interface

HIL Hardware-In-the-Loop

HIPAA | Health Insurance Portability and
Accountability Act

HL7 Health Level Seven

IoT Internet of Things

KPI Key Performance Indicator

MC/DC | Modified Condition
Decision Coverage

ML Machine Learning

MTTR | Mean Time to Recovery

OAT Orthogonal Array Testing
ODC Orthogonal Defect Classification
SoS System of Systems
SPI Software Process Improvement
SPICE Software Process Improvement
and Capability Determination
SUT System Under Test
TDD Test-Driven Development
TMMi | Test Maturity Model integration
User Interface
Unified Process
INTRODUCTION

Software testing consists of the dynamic vali-
dation that a system under test (SUT) provides
expected behaviors on a finite set of fest cases
suitably selected from the usually infinite exe-
cution domain.

In the above statement, italicized words

correspond to key issues in the Software
Testing knowledge area (KA). Those terms
are discussed below.

5-1

System Under Test: ‘This term refers to
the tested object, which can be a pro-
gram, a software product, an applica-
tion, a service-oriented application (e.g.,
web services, microservices), middleware
(HW/SW), a services composition, a
system, a System of Systems (SoS), or an
Ecosystem.

Test Case: A test case is the specification
of all the entities that are essential for the
execution, such as input values, execution
and timing conditions, testing procedure,
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and the expected outcomes (e.g., pro-
duced values, state changes, output mes-
sages). Input values alone are not always
sufficient to specify the test cases because
the SUT might react to the same input
with different behaviors, depending, for
instance, on the SUT state or environ-
mental conditions. A set of test cases is
usually called a zesz suite.

* Dynamic: Dynamic validation requires
executing a test suite on the SUT. Static
techniques complement dynamic testing,
and they are covered in the Software
Quality KA

* Finite: Even in a simple SUT, executing
all the possible test cases (i.e., exhaus-
tive testing) could require months or
years. Consequently, in practice, testing
targets a subset of all possible test cases
determined by different criteria. Testing
always implies a trade-off between lim-
ited resources and schedules on the one
hand and inherently unlimited test
requirements on the other.

* Selected: Identifying the most suitable
selection criteria under given conditions
is a complex problem. Different tech-
niques can be considered and combined
to tackle that problem, such as risk anal-
ysis, software requirements, cost reduc-
tion, quality attributes satisfaction,
prioritization, and fault detection. The
many proposed test techniques differ in
how the test suite is selected, and soft-
ware engineers must be aware that dif-
ferent selection criteria might yield vastly
different degrees of effectiveness.

* Expected: For each executed test case, it
must be possible, although it might not be
easy, to decide whether the observed SUT
outcomes match the expected ones. Indeed,
the observed behavior may be checked
against user needs (commonly referred to
as testing for validation), against a spec-
ification (testing for verification), or, per-
haps, against the foreseen behavior from

implicit requirements or expectations.
(See Section 4.3, Acceptance Criteria-
Based Requirements Specification, in the
Software Requirements KA.)

As reflected in this discussion, software
testing is a pervasive and holistic activity
involving all the steps of any process devel-
opment life cycle (e.g., traditional or shift-left
development). The remainder of this chapter
presents the basics of software testing and its
challenges, issues, and commonly accepted
practices and solutions.

BREAKDOWN OF TOPICS FOR
SOFTWARE TESTING

Figure 5.1 shows the breakdown of topics
for the Software Testing KA. The Matrix
of Topics vs. Reference Material provides
a more detailed breakdown at the end of
this KA. The first topic, Software Testing
Fundamentals, covers the basic definitions in
software testing, the basic terminology and
key issues, and software testing’s relationship
with other activities.

The second topic, Test Levels, contains
two (orthogonal) subtopics. The first subtopic,
The Target of the Test, lists the levels into
which the testing of large software is tradi-
tionally subdivided, and the second subtopic,
Objectives of Testing, discusses testing for
specific conditions or properties. Not all types
of testing apply to every software product, nor
has every possible type been listed. The Target
of the Test and Objectives of Testing together
determine how the test suite is identified, both
regarding its consistency (How much testing
is enough for achieving the stated objective?)
and its composition (Which test cases should
be selected for achieving the stated objective?).
(However, usually, “for achieving the stated
objective” remains implicit, and only the first
part of the two questions above is posed.)
Criteria for addressing the first question are

1 It is worth noting that terminology is not uniform among different communities, and some use the

term Zesting to refer to static techniques as well.
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Figure 5.1. Breakdown of Topics for the Software Testing KA

test adequacy criteria, whereas those used for
addressing the second question are the zesz
selection criteria.

Several Test Techniques have been devel-
oped in the past few decades, and new ones
are still being proposed. Therefore, the third
topic covers generally accepted and standard-
ized techniques.

Test-Related Measures are dealt with in
the fourth topic, while the issues relative to
the Test Process are covered in the fifth.

Software Testing in the Development
Processes and the Application Domains is
described in the sixth topic, and Testing of
and Testing Through Emerging Technologies
are described in the seventh topic. Finally,
Software Testing Tools are presented in
topic eight.

1. Software Testing Fundamentals
[1% c1, c2; 2%, ¢8; 14%, 7]

'This section provides an overview of the main
testing issues and the relationship of testing
to the other activities. Most of the testing
terms used here are also defined. A more
comprehensive overview of the testing and

testing-related terminology can be found in
the cited references.

1.1 Faults vs. Failures
[1% c1s5; 2% c1; 14% c1s3]

Many terms are used in the software engi-
neering literature to describe a malfunction:
notably fault (see, for comparison, defect in
Section 3.2, Defect Characterization, in the
Software Quality KA), failure and error. It
is essential to distinguish between the cause
of a malfunction (for which the term fault is
used here) and an undesired effect observed
in the system’s delivered service (a failure).
Indeed, there might well be faults in the
software that never manifest as failures.
(See Theoretical and Practical Limitations
of Testing in Section 1.2.8.) Thus, testing
can reveal failures, but the faults causing
them are what can and must be removed.
However, a failure’s cause cannot always
be unequivocally identified. No theoretical
criteria exist to definitively determine, in
general, the fault that caused an observed
failure. The fault might have to be modified
to remove the failure, but other modifications
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might also work. To avoid ambiguity, we
could refer to failure-causing inputs instead
of faults — those sets of inputs that cause a
failure to appear.

1.2. Key Issues

This subsection provides an overview of the
main testing issues.

1.2.1. Test Case Creation
[1% c12s1, 1253, 2% c8]

Test case creation or generation creates the test
suite useful for testing the SUT for specific
purposes (e.g., adequacy, accuracy, or assess-
ment). Because test case generation is among
the most important and intensive software
testing activities, it is usually supported by
approaches, techniques, and tools to automate
the process.

1.2.2. Test Selection and Adequacy Criteria
[1* c1s14, c6s6, c12s7, 2%, c8]

A test selection criterion is a means of
selecting test cases or determining that a
test suite is sufficient for a specified purpose.
Test case selection aims to reduce the car-
dinality of the test suites while keeping the
same effectiveness in terms of coverage or
fault detection rate. Test adequacy criteria
can be used to decide when sufficient testing
is accomplished.

1.2.3 Prioritization/Minimization
[4, part 2, part 3, c5]

Suitable strategies for test case selection or
prioritization can be adopted to improve
testing efficacy. Test case prioritization aims
to define a test execution order according to
some criteria (e.g., coverage, fault detection
rate, similarity, and risk), so those tests with a
higher priority are executed before those with
a lower priority. Test case minimization usu-
ally aims to reduce a test suite by removing
redundant test cases according to some crite-
rion or purpose.

1.2.4. Purpose of Testing
[1* c13s11, c11s4, 2% c8]

Different well-defined purposes can guide
testing activity; it is only by considering a
specific purpose that a test suite can be gen-
erated (selected), executed, and evaluated (see
Section 2 for more details).

1.2.5. Assessment and Certification
[4, part 1, c5; 2%, ¢7, ¢25; 8]

Testing needs to focus on specific (mandatory)
prescriptions, such as requirements, laws, and
standards. Test cases should be generated and
executed to provide evidence useful for eval-
uating and/or certifying adherence to the
selected prescriptions. Usually, assessment and
certification of the test results include verifying
that the test cases have been derived and gen-
erated using baseline requirements, adopting
a configuration control process, and using
repeatable processes.

1.2.6. Testing for Quality Assurance/
Improvement

[1%, c16s2; 4, part 1, ¢5; 9]

Testing has many aspects, including quality
improvement and assurance. These charac-
teristics involve planned and systematic sup-
porting processes and activities leveraging
confidence that the SUT fulfills established
technical or quality requirements. Thus,
quality improvement and assurance involve
defining methods, tools, skills, and prac-
tices to achieve the specific quality level and
objectives. The list of the main quality char-
acteristics that testing can measure or assess
is reported in ISO/IEC 25010:2023 [9]. (See
also Section 1.3.2, Software Product Quality,
in the Software Quality KA.)

1.2.7. The Oracle Problem
[1% 159, ¢9s7]

An important testing component is the
oracle. Indeed, a test is meaningful only if
it is possible to decide its observed outcome.



An oracle can be any human or mechanical
agent that decides whether the SUT behaved
correctly in each test and according to the
expected outcomes. Consequently, the oracle
provides a “pass” or “fail” verdict. The oracle
cannot always decide; in these cases, the test
output is classified as inconclusive. There are
many kinds of oracles — for example, unam-
biguous requirements specifications, behav-
ioral models, and code annotations. The
automation of oracles can be difficult and
expensive.

1.2.8. Theoretical and Practical Limitations
[1*% c2s7]

Testing theory warns against ascribing unjus-
tified confidence to a series of successful tests.
Unfortunately, most established results of
the testing theory are negative results in that
they state what is not achieved as opposed
to what is achieved. The most famous quo-
tation on this point is the Dijkstra aphorism
that “program testing can be used to show
the presence of bugs, but never to show their
absence” [3]. The obvious reason for this is
that complete testing is not feasible in real-
istic software.

1.2.9. The Problem of Infeasible Paths
[1% c4s7]

Infeasible paths are control flow paths that
cannot be exercised by any input data (i.e., test
cases). Managing (i.e., identifying, solving or
removing) the infeasible paths can help reduce
the time and resources devoted to testing.
They are a significant problem in path-based
testing, particularly in the automated deri-
vation of test cases to exercise control flow
paths. Additionally, the detection of infeasible
paths can also play a role in reducing security
vulnerabilities.

1.2.10. Testability
[1* c17s2]

The term software testability has two related
but different meanings. On the one hand, it
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refers to the ease with which a given test cov-
erage criterion can be satisfied; on the other
hand, it is defined as the likelihood, possibly
measured statistically, that a test suite will
expose a failure if the software is faulty. Both
meanings are important.

1.2.11 Test Execution and Automation
[4, part 1, c4]

An important challenge of testing is to
improve attainable automation, either
by developing advanced techniques for
generating the test inputs or, beyond
test generation, by finding innovative sup-
port procedures to (fully) automate the dif-
ferent testing activities — for instance, to
increase the number of test cases generated
or executed.

1.2.12. Scalability
[1% ¢8s7]

Scalability is the software’s ability to increase
and scale up on its nonfunctional require-
ments, such as load, number of transactions,
and volume of data. Scalability is also con-
nected to the complexity of the platform and
environment in which the program runs, such
as distributed, wireless networks and virtual-
ized environments, large-scale clusters, and
mobile clouds.

1.2.13 Test Effectiveness
[1* c1s1; 2* ¢8s1; 8]

Evaluating the SUT, measuring a testing
technique’s efficacy, and judging whether
testing can be stopped are important evi-
dences for software testing, and they may
require defining and selecting the proper test
effectiveness measures.

1.2.14 Controllability, Replication, and
Generalization

[1* c12512; 4, part 2, ¢7]

Specific aspects of testing include the
following:
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« Controllability refers to the transition
of testing activities from the laboratory
(i-e., controlled conditions) to reality (i.e.,
uncontrolled conditions).

* Replication refers to the ability for dif-
ferent people to perform the same
testing activities. The purpose is to verify
whether a given testing theory works, at
least in the laboratory.

* 'The generalization of testing is connected
to external validity — i.e., the extent to
which the test approach can be applied
to broader settings or target populations.
'The generalizability of the software testing
can be important for managing the testing
activities (in terms of cost and effort) and
increasing confidence in the test results.

1.2.15. Offtine vs. Online Testing
[10, 3]

The testing process can be executed in two
settings: offfine and online. Usually, the
SUT is validated in an environment without
external interaction in offline testing, whereas
the SUT interacts with the real application
environment in online testing. The test cases
are either manually or automatically derived

in both cases, and the expected outcomes are
used to assess the SUT.

1.3. Relationship of Iesting to Other Activities

Software testing is related to but different
from static software quality management
techniques, proofs of correctness, debugging,
and program construction. However, it is
informative to consider testing from the view-
point of software quality analysts and certi-
fiers. For further discussion, see the following:

* Testing vs. Static Software Quality
Management Techniques: See Section
2.2.1, Static Analysis Techniques, in the
Software Quality KA.

* Testing vs. Quality Improvement/
Assurance: See Section 1.3.2, Software
Product Quality, in the Software
Quality KA.

* Testing vs. Correctness Proofs and
Formal Verification: See the Software
Engineering Models and Methods KA.

* Testing vs. Debugging: See Construction
Testing in the Software Construction KA
and Debugging Tools and Techniques in
the Computing Foundations KA.

¢ Testing vs. Program Construction: See
Construction Testing in the Software
Construction KA.

* Testing vs. Security: See the new KA:
Software Security.

¢ Testing vs. Effort Estimation: See the
Software Engineering Management KA.

* Testing vs. Legal Issues: See the Software
Engineering Professional Practice KA.

2. Test Levels
[1%, c1s13; 2%, c8s1]

Software testing is usually performed at dif-
ferent /Jevels throughout development and
maintenance. Levels can be distinguished
based on the object of testing, the farget, or
on the purpose or odjective (of the test level).

2.1. The Target of the Test
[1* c1s13, 2%, c8s1]

The target of the test can vary depending
on the SUT, the conditions of the environ-
ment, and the budget/time devoted to the
testing activity. Four test stages can be distin-
guished: unit, integration, system, and accep-
tance. These four test stages do not imply
any development process, nor is any one of
them assumed to be more important than the
other three.

2.1.1. Unit Testing
[1% c3, 2% 8]

Unit testing verifies the functioning in isola-
tion of SUT elements that are separately test-
able. Depending on the context, these could
be the individual subprograms or components,
a subsystem, or a composition of SUT com-
ponents. Typically, but not always, the person
who wrote the code conducts the unit testing.



2.1.2. Integration Testing
[1% 7, 2%, 8]

Integration testing verifies the interac-
tions among SUT elements (for instance,
components, modules, or subsystems).
Integration strategies involve the incre-
mental (and systematic) integration of the
SUT elements considering either identified
functional threads or architecture specifica-
tions. Typical integration testing strategies
are top-down, bottom-up, mixed (or sand-
wiched), and the big bang. They focus on
different perspectives of the level at which
SUT elements are integrated. Integration
testing is a continuous activity that can
be performed at each development stage.
It may target different aspects, such as
interoperability (e.g., compatibility or con-
figuration) of the SUT elements or with
the external environment. External inter-
faces to other applications, utilities, hard-
ware devices or operating environments can
also be considered.

2.1.3. System Testing
[1% ¢8, 2% 8]

System testing concerns testing the behavior
of the SUT (according to the definition of
Section 1). Effective unit and integration
testing should have identified many SUT
defects. In addition, system testing is usu-
ally considered appropriate for assessing
non-functional system requirements, such as
security, privacy, speed, accuracy, and reli-
ability. (See Functional and Non-Functional
Requirements in the Software Requirements
KA and Software Quality Requirements in
the Software Quality KA.)

2.1.4. Acceptance Testing
[1% c1s7, 2%, c8s4]

Acceptance testing targets the deployment of a
SUT. Its main goal is to verify that the SUT
satisfies the requirements and the end-users’
expectations. Generally, it is run by or with
the end-users to perform those functions and
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tasks for which the software was built. For
example, this testing activity could target
usability testing or operational acceptance.
Defining acceptance tests before imple-
menting the corresponding functionality is
a key activity of the acceptance test-driven
development (ATDD). (See the Software
Requirements KA, Section 4.3.)

2.2. Objectives of Testing
[1% c1s7]

Testing is conducted considering specific
objectives, which are stated (more or less)
explicitly and with varying degrees of preci-
sion. Stating the testing objectives in precise,
quantitative terms supports measurement and
control of the test process.

Testing can be aimed at verifying dif-
ferent properties. For example, test cases
can be designed to check that the functional
specifications are correctly implemented,
which is variously referred to in the liter-
ature as conformance testing, correctness
testing or functional testing. However, sev-
eral other non-functional properties may
be tested as well, including performance,
reliability, and usability. (See Models and
Quality Characteristics in the Software
Quality KA.)

Other important testing objectives include
but are not limited to reliability measure-
ments, identification of security and pri-
vacy vulnerabilities, and usability evaluation;
different approaches would be necessary
depending on the objective. Note that, in
general, the test objectives vary with the test
target; different purposes are addressed at dif-
ferent levels of testing.

The subtopics listed below are those most
cited in the literature.

2.2.1. Conformance Testing
[1* c10s4]

Conformance testing aims to verify that the
SUT conforms to standards, rules, specifi-
cations, requirements, design, processes, or
practices.
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2.2.2 Compliance esting
[1* c12s3]

Compliance testing aims to demonstrate the
SUT’s adherence to a law or regulation.
Usually, compliance testing is forced by an
external regulatory body.

2.2.3. Installation Testing
[1% c12s2]

Often, after system and acceptance testing is
completed, and the SUT has been installed in
the target environment, the SUT is verified.
Installation testing can be viewed as system
testing conducted in the operational environ-
ment of hardware configurations and other
operational constraints. Installation proce-
dures may also be verified.

2.2.4. Alpha and Beta Testing
[1* c13s7, 1656, 2%, c8s4]

Before the SUT is released, it is sometimes
given to a small, selected group of potential
users for trial use (a/pha testing) and/or to a
larger set of representative users (beza testing).
These users report problems with the product.
Alpha testing and beta testing are often
uncontrolled and are not always referred to in
a test plan.

2.2.5. Regression Testing
[1%, 8511, c13s3; 4, part 1, c5]

According to the definition reported in [5],
regression testing is the “selective retesting of
a SUT to verify that modifications have not
caused unintended effects and that the SUT
still complies with its specified requirements.”
In practice, the approach is designed to show
that the SUT still passes previously passed tests
in a test suite (in fact, it is sometimes referred
to as non-regression testing). In some cases, a
trade-off must be made between the assur-
ance given by regression testing every time a
change is made and the resources required to
perform the regression tests. This can be quite
time-consuming because of the many tests

that might be executed. Regression testing
can be conducted at each test level described
in Section 2.1. It may involve functional and
non-functional testing, such as reliability,
accessibility, usability, maintainability, con-
version, migration, and compatibility testing.
Regression testing may involve selection
(see Section 1.2.2) and minimization (see
Section 1.2.3) of test cases, as well as the
adoption of prioritization approaches (see
Section 2.2.6) to existing test suites.
Regression testing is a fundamental activity
of Agile, DevOps, test-driven development
(TDD), and Continuous Development. It is
usually performed after integration testing and
before deployment to production or operation.

2.2.6. Prioritization Testing
[1% c12s7]

Test case prioritization aims to schedule test
cases to increase the rate and likelihood of
fault detection, the coverage of code under
test, and the SUT’s reliability. Typically, pri-
oritization testing relies on heuristics, and
its performance might vary according to the
SUT, the environment, and the available test
cases. Among the different prioritization
proposals, similarity-based prioritization is
one of the most commonly adopted. In this
approach to prioritization, test cases are pri-
oritized starting from those most dissimilar
according to a predefined distance function.

2.2.7. Non-functional Testing
[2% 8]

Non-functional testing targets the validation of
non-functional aspects (such as performance,
usability, or reliability), and it is performed
at all test levels. At the state of the practice,
there are hundreds of non-functional testing
techniques that include but are not limited to
the following:

* Performance Testing [4, part 1]:
Performance testing verifies that the
software meets the specified performance
requirements and assesses performance



characteristics  (e.g., capacity and
response time).

Load Testing [4, part 1]: Load testing
focuses on validating the SUT’s behavior
under load pressure conditions to dis-
cover problems (e.g., deadlocks, racing,
buffer overflows and memory leaks) or
reliability, stability, or robustness viola-
tions. It aims to assess the rate at which
different service requests are submitted
to the SUT.

Stress Testing [1%, c8s8]: Stress testing
aims to push the SUT beyond its capa-
bilities by generating a load greater than
what the system is expected to handle.
Volume Testing [4, part 1]: Volume
testing targets the assessment of the
SUT’s internal storage limitations and its
ability to exchange data and information.
Failover Testing [1%, c17s2; 2% c8]:
Failover testing validates the SUT’s
ability to manage heavy loads or unex-
pected failure to continue typical opera-
tions (e.g., by allocating extra resources).
Failover testing is also connected with
recoverability validation.

Reliability Testing [1%, c15; 2% c11]:
Reliability testing evaluates the SUT’s
reliability by identifying and correcting
faults. Reliability testing observes the
SUT in operation or exercises the SUT
by using test cases according to statistical
models (operational profiles) of the dif-
ferent users’ behaviors. Usually, reliability
is assessed through reliability growth
models. The continuous development
processes (such as DevOps) are facili-
tating the adoption of reliability testing in
the various iterations for improving final
SUT quality.

Compatibility Testing [4, part 1; 10, c3]:
Compatibility testing is used to verify
whether the software can collaborate with
different hardware and software facilities
or with different versions or releases.
Scalability Testing [1%, ¢8s7; 2* c17]:
Scalability testing assesses the soft-
ware’s ability to scale up non-functional
requirements such as load, number of
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transactions, volume of data. It could
integrate or extend load, elasticity and
stress testing.

* Elasticity Testing [17]: Elasticity testing
assesses the ability of the SUT (such as
cloud and distributed systems) to rap-
idly expand or shrink compute, memory,
and storage resources without compro-
mising the capacity to meet peak utili-
zation. Some elasticity testing objectives
are to control behaviors, to identify the
resources to be (un)allocated, and to coor-
dinate events in parallel.

* Infrastructure Testing [8, annex HJ:
Infrastructure testing tests and validates
infrastructure components to reduce the
chances of downtime and improve the
performance of the I'T infrastructure.

* Back-to-Back Testing [5]: ISO/IEC/
IEEE 24765 defines back-to-back testing
as “testing in which two or more vari-
ants of a program are executed with
the same inputs, the outputs are com-
pared, and errors are analyzed in case of
discrepancies.”

* Recovery Testing [17%, c14s2]: Recovery
testing is aimed at verifying software
restart capabilities after a system crash or
other disaster.

2.2.8. Security Testing
[27 c13; 4, part 4, annex A]

Security testing focuses on validating that
the SUT is protected from external attacks.
More precisely, it verifies the confidenti-
ality, integrity, and availability of the sys-
tems and their data. Usually, security testing
includes validation against misuse and abuse
of the software or system (negative testing).
(See Security Testing in the Software
Security KA.)

2.2.9. Privacy Testing
[2% c13, c14]

Privacy testing is devoted to assessing the
security and privacy of users’ personal data to
prevent attacks. It specifically assesses privacy
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and information-sharing policies, as well
as the validation of decentralized manage-
ment of users’ social profiles and data storage
solutions. (See Legal Issue in the Software
Engineering Professional Practice KA.)

2.2.10. Interface and Application Program
Interface (API) Testing
[2% c8s1; 14%, c7s12; 4, part 5, ¢4, 7]

Interface defects are common in com-
plex systems. Inferface testing aims to verify
whether the components’ interface provide
the correct exchange of data and control
information. Usually, the test cases are gen-
erated from the interface specification. A
specific interface testing objective is to sim-
ulate the use of APIs by end-user applica-
tions. That involves generating parameters
of the API calls, setting conditions of the
external environment, and defining internal

data that affect the API.

2.2.11. Configuration Testing
[1* c8s5]

Where the SUT is built to serve different
users, configuration testing verifies the software
under specified configurations.

2.2.12. Usability and Human—Compuz‘er
Interaction Testing
[2% c8s4; 19%, c6; 4, part 4, annex A]

The main task of wusability and human-com-
puter inferaction testing is to evaluate how easy
it is for end-users to learn to use the software.
It might involve testing the software func-
tions that support user tasks, the documenta-
tion that aids users, and the system’s ability to
recover from user errors. (See User-Centered
Design in the Software Design KA.)

3. TestTechniques
[1%, c1s15; 4, part 4]

To increase the SUT’s overall quality [4, part
4] available techniques propose systematic
procedures and approaches.

Testing techniques can be classified by con-
sidering different key aspects such as specifi-
cation, structure, and experience [4, part 4].
Additional classification sources can be the
faults to be discovered, the predicted use, the
models, the nature of the application, or the
derived knowledge. For instance, model-based
testing [7; 4, part 1] refers to all the testing
techniques that use the concept of a model rep-
resenting behavioral specification, the SUT’s
structure, or the available knowledge and
experience. However, classification overlap-
ping is possible, and one category might deal
with combining two or more techniques.

Alternative classifications based on the
degree of information about the SUT are
available in the literature. Indeed, in the
specification-based techniques, also known
as black-box techniques, the generation of
test cases is based only on the SUT’s input/
output behavior, whereas in the struc-
ture-based, also called white-box (or glass-box
or clear-box), techniques, the test cases are
generated using the information about how
the SUT has been designed or coded.

As some testing techniques are used
more than others, the remainder of the sec-
tion presents the standard testing techniques
and those commonly adopted at the state of
the practice.

3.1. Specification-Based Techniques
[1%, c6s2; 4, part 4]

The underlying idea of specification-based tech-
niques (sometimes also called domain testing
techniques) is to select a few test cases from
the input domain that can detect specific cat-
egories of faults (also called domain errors).
These techniques check whether the SUT
can manage inputs within a certain range and
return the required output.

3.1.1. Equivalence Partitioning
[1% c9s4]

Equivalence partitioning involves partitioning
the input domain into a collection of subsets
(or equivalence classes) based on a specified



criterion or relation. This criterion or relation
can rely on the computational results, the
control flow or data flow, or the valid inputs
that are accepted and processed by the SUT
and invalid inputs. An example can be the
valid and out-of-range values. This last could
generate an error message or initiate error
processing. A representative test suite (some-
times containing only one test case) is usually
taken from each equivalence class.

3.1.2. Boundary Value Analysis
[1%, ¢9s5; 4, part 4]

Test cases are chosen on or near the bound-
aries of the input domain of variables, with the
underlying rationale that many faults tend to
concentrate near the extreme values of inputs.
An extension of this technique is robustness
testing, wherein test cases are also chosen out-
side the input domain of variables to test pro-
gram robustness in processing unexpected or
erroneous inputs.

3.1.3. Syntax Testing
[1%, c10s11, 2% c5; 4, part 4]

The Syntax Testing techniques, also known
as formal specification-based techniques, rely
on the SUT specifications in a formal lan-
guage. (See Formal Methods in the Software
Engineering Models and Methods KA.) This
representation permits automatic derivation
of functional test cases and, at the same time,
provides an oracle for checking test results.

3.1.4. Combinatorial Test Techniques
[1%, ¢9s3; 4, part 4]

The Combinatorial Test Techniques system-
atically derive the test cases that cover specific
parameters of values or conditions. According
to [4, part 4], the commonly used combina-
torial test techniques are All combinations
Testing, Pair-Wise Testing, Each Choice
Testing, and Base Choice Testing. All com-
binations testing focuses on all the possible
input combinations, whereas its subset, also
called #-wise testing, considers every possible
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combination of # input. In this case, more
than one pair is derived (i.e., by including
higher-level combinations). Pair-wise testing
is a specific combinatorial testing technique
where test cases are derived by combining
values of every pair of an input set. These
techniques are also known as orthogonal
array testing (OAT).

3.1.5. Decision Table
[1%, ¢9s6; 1%, c13s6; 4, part 4]

Decision tables (or trees) represent logical
relationships between conditions (roughly,
inputs) and actions (roughly, outputs).
Usually, they are widely adopted for knowl-
edge representation (e.g., machine learning
(ML)). Test cases are systematically derived
by considering every possible combination
of conditions and their corresponding resul-
tant actions. A related technique is cause-¢ffect
graphing. Shift-left development processes are
taking advantage of this kind of testing tech-
nique because these techniques are useful for
documenting the test results and factors that
can affect them.

3.1.6. Cause-Effect Graphing
[1%, c1s6; 4, part 3, part 4]

Cause-effect graphing techniques rely on log-
ical networks that map a set of causes to a
set of effects by systematically exploring the
possible combinations of input conditions.
They identify the effects and link the effects
to their causes through model graphs. Cause-
effect graphing techniques are used in testing
because they allow specification analysis, the
identification of the relevant input conditions
or causes, the consequent transformations,
and the output conditions.

3.1.7. State Transition Testing
[1%, c10; 4, part 4]

Techniques based on Finite-State Machines
(State Transition Testing techniques in [4,
part 4]) focus on representing the SUT with
a finite-state machine. In this case, the test
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suite is derived to cover the states and tran-
sitions according to a specific coverage level.

3.1.8. Scenario-Based Testing
[27 ¢8s3, c19s3; 4, part 4; 7]

A model in this context is an abstract (formal)
representation of the SUT or its software
requirements. (See Modeling in the Software
Engineering Models and Methods KA.)
Scenario-based testing is used to validate require-
ments, check their consistency, and generate
test cases focused on the SUT’s behavioral
aspects. (See Types of Models in the Software
Engineering Models and Methods KA.) The
key components of scenario-based testing are
the notation used to represent the model of the
software or its requirements, workflow models
or similar models, the test strategy or algorithm
used for test case generation, the supporting
infrastructure for the test execution, and the
evaluation of test results compared to expected
results. Because of the complexity of the tech-
niques, scenario-based testing approaches are
often used with test automation harnesses.

Among scenario-based testing, workflow
models can also be used to graphically represent
the sequence of activities performed by humans
and/or software applications. In this case, each
sequence of actions constitutes one workflow
(also called a scenario). Usually, it is important
to ensure that both typical and alternate work-
flows are also tested. For example, business
process testing is part of this scenario-based
technique. In this case, the special focus is on
the roles in a workflow specification.

3.1.9. Random Testing
[1%, ¢9s7; 4, part 4]

In this approach, test cases are generated
purely at random. This testing falls under
the heading of input domain testing because
the input domain must be known to be able
to pick random points within it. Random
testing provides a relatively simple approach
to test automation. Enhanced forms of
random testing (such as adaptive random
testing) have been proposed in which other

input selection criteria direct the random
input sampling.

Under the name of fuzz testing, the
random selection of invalid and unexpected
inputs and data is extensively used in cyber-
security to find hackable software bugs,
coding errors, and security loopholes. (See
also Sections 2.2.8 Security Testing and 8.2
Categories of Tools.)
3.1.10. Evidence-Based [10, c6s2]
Evidence-based software engineering (EBSE),
which follows a rigorous research approach,
is the best solution for a practical problem.
EBSE includes the following phases:

* Identifying the evidence and forming
a question

* Tracking down the best evidence to
answer the question

¢ Critically analyzing the evidence in light
of the problem that the evidence should
help solve.

EBSE principles can also be applied to the
testing process. For that purpose, the widely
used approaches that allow identifying and
aggregating evidence are systematic mapping
studies and systematic reviews.

3.1.11. Forcing Exception
(5]

Test cases are specifically conceived for
checking whether the SUT can manage a
predefined set of exceptions/errors, such as
data exception, operation exception, overflow
exception, protection exception or underflow
exception. Testing techniques usually focus on
negative test scenarios (i.e., test cases that are
able to force the generation of error messages).

3.2. Structure-Based Test Techniques
[4, part 4]

(sometimes
called code-based test techniques) focus on
the code and its structure. Structure-Based

Structure-based  test techniques



Test Techniques can be performed at dif-
ferent levels (such as code development, code
inspection, or unit testing) and can include
static testing (such as code inspection, code
walkthrough, and code review), dynamic
testing (like statement coverage, branch cov-
erage, and path coverage), or code complexity
measurement (e.g., using techniques like cyc-
lomatic complexity [12]).

3.2.1. Control Flow Testing
[1%, c4; 4, part 4]

Control flow testing covers all the statements,
branches, decisions, branch conditions, mod-
ified condition decision coverage (MC/DC),
blocks of statements, or specific combinations
of statements in a SUT. The strongest of the
control flow-based criteria is path testing,
which aims to execute all entry-to-exit con-
trol flow paths in a SUT’s control flow graph.
Because exhaustive path testing is generally
not feasible because of loops, other less strin-
gent criteria focus on coverage of paths that
limit loop iterations, such as statement cov-
erage, branch coverage, and condition/deci-
sion testing. The adequacy of such tests is
measured in percentages; for example, when
all branches have been executed at least
once by the tests, 100% branch coverage has
been achieved.

3.2.2. Data Flow Testing
[1% c5; 4, part 4]

In data flow testing, the control flow graph is
annotated with information about how the
variables are defined, used, and killed (unde-
fined). Commonly adopted data flow testing
techniques are All-Definitions Testing, All-
C-Uses Testing, All-P-Uses Testing, All-
Uses Testing and All-DU-Paths Testing. The
strongest data flow testing criterion is the All-
DU-Paths Testing, where all definition and
use (DU) paths need to be covered [4, part
4]. This is because it requires executing, for
each variable, every control flow path segment
from a definition of that variable to the use
of that definition. However, weaker strategies
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such as all-definitions and all-uses are used to
reduce the number of paths required.

3.2.3. Reference Models for Structure-Based Test
Techniques
(1%, c4]

Although not a technique, a SUT’s control
structure can be graphically represented using
a flow graph to visualize structure-based test
techniques. A flow graph is a directed graph,
the nodes and arcs of which correspond to
program elements. (See Graphs and Trees
in the Mathematical Foundations KA.) For
instance, nodes may represent statements or
uninterrupted sequences of statements, and
arcs may represent the transfer of control
between nodes.

3.3. Experience-Based Tecbnigues
[4, part 1, part 4]

The generation of the most suitable test suite
may depend on different factors, such as human
knowledge of the SUT and its context and the
tester’s experience and intuition. In the fol-
lowing section, the commonly adopted experi-
ence-based techniques are briefly introduced.

3.3.1. Error Guessing
[1%, ¢9s8; 4, part 4]

In error guessing, software engineers design
test cases specifically to anticipate the most
plausible faults in each SUT. Good sources of
information are the history of faults discov-
ered in earlier projects and the software engi-
neer’s expertise.

3.3.2. Exploratory Testing
[4, part 1]

Exploratory testing is defined as simultaneous
learning, test design and test execution. The
test cases are not defined in advance but are
dynamically designed, executed, and modi-
fied according to the collected evidence and
test results, such as observed product behavior,
peculiarities of the SUT, the domain and the
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environment, the failure process, the types
of possible faults and failures, and the risk
associated with a particular product. Usually,
the intuition, knowledge, and expertise of
the personnel in charge of performing the
exploratory testing affect the testing eftec-
tiveness. Exploratory testing is widely used
in shift-left development (such as Agile). (See
Section 5.4.2.)

3.3.3. Further Experience-Based Tec/migues
[4, part 4; 13]

At the state of the practice, experience-based
technigues may include further approaches
such as Ad Hoc-based, knowledge-based and
ML-based testing techniques.

Ad Hoc testing is a widely used technique in
which test cases are derived by relying on the
software engineer’s skill, intuition, and expe-
rience with similar programs. It can be useful
for identifying test cases that are not easily gen-
erated by more formalized techniques. Typical
Ad Hoc methodologies are the following:

* Monkey testing runs randomly generated
test cases to simulate rundom activities
and cause the program to stop.

* Pair (Buddy) testing involves two indi-
viduals. One generates and runs the test
cases; the other observes and analyzes
the testing process. Pair testing allows
for generating test cases with broader and
better test coverage.

* Gamification aims to convert testing
tasks to components of gameplay. By
applying specific techniques (such as
engaging practitioners or crowdsourcing
complex testing tasks), gamification can
substantially improve software testing
practice and, consequently, SUT quality.

* Quick testing, in which a very small test
suite is selected and executed to swiftly
identify critical issues in the SUT. Itaims
to enhances the probability of detecting
faults early in the development process.

* Smoke testing (also known as Build
Verification Testing) ensures that the
SUT’s core functionalities behave

properly. It also guarantees that the SUT
is operational before the planned testing
begins. In addition, smoke testing pre-
vents failures because of the test envi-
ronment (e.g., because artifacts or
packages are not properly built). Smoke
testing is also considered a special case of
quick testing.

Knowledge-based testing and ML-based
testing exploit (formal or informal) knowl-
edge about the SUT or derive it from obser-
vations of SUT executions for defining its
behavioral models (such as ontologies or
decision tables) (see Section 3.6.1), rules,
and non-functional properties. In addition,
Knowledge-based testing and ML-based
testing specify the testing needs and iden-
tify test objectives for which test cases are
generated.

3.4. Fault-Based and Mutation Tec/miguex
[1% c1s14, 1* c3s5; 5]

Fault-based testing techniques devise test
cases specifically to reveal likely or predefined
fault categories. A fault model can be intro-
duced that classifies the different faults to
better focus the test case generation or selec-
tion. In this context, a variety of platforms
and development processes (e.g., waterfall,
spiral and Agile) consider the orthogonal
defect classification (ODC) a valid meth-
odology for collecting semantic information
about the different defects and reducing the
time and effort of the root cause analysis.
Mutation Testing was originally con-
ceived as a technique to evaluate test suites
(see Section 4.2, Evaluation of the Tests
Performed) in which a mutant is a slightly
modified version of the SUT (also called
gold), differing from it by a small syntactic
change. Every test case exercises both the
gold version and all generated mutants. If
a test case succeeds in identifying the dif-
ference between the gold version and a
mutant, the latter is said to be “killed.” The
underlying assumption of mutation testing,
the coupling effect, is that more complex



but real faults will be found by looking for
simple syntactic faults. For the technique to
be effective, many mutants must be auto-
matically generated and executed systemat-
ically [6]. Mutation testing is also a testing
criterion in itself. Test cases are randomly
generated until enough mutants have been
killed, or tests are specifically designed to
kill surviving mutants. In the latter case,
mutation testing can also be categorized
as a structure-based technique. Mutation
testing has been used effectively for gener-
ating fuzz testing. A more recent applica-
tion of the mutation process is metamorphic
testing. This is particularly suitable for in
addressing ML systems’ testing challenges.
In this case, the modifications (called also
morph) are applied to the inputs so a rela-
tionship can connect the previous input
(and its output) to the new morphed input
(and its output).

3.5. Usage-Based Tec/migues
[1% c15s5]

Usage-based techniques usually rely on a usage
model or profiles. In this case, the testing
environment needs to represent the actual
operational environment, and the sequence of
test case execution should reproduce the SUT
usage by the target stakeholder. Statistical
sampling is used for simulating the execu-
tion of many test cases. Thus, sometimes, the
term random testing is also associated with
these techniques. Usage-based statistical
testing is applied more during the acceptance
testing stage.

3.5.1. Operational Profile
[1* 1555, 2%, c11]

Testing based on operational profiles aims at
generating test cases that estimate the reli-
ability of the SUT or part of it. Therefore, the
goal is to infer from the observed test results
the future reliability of the software (when it
is in use). Because the established reliability
strictly depends on the operating profile, the
main difficulty (and cost) in using this testing
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approach comes from the operational profile
derivation. Therefore, one possible solution
is to assign to the input the probabilities or
profiles according to their frequency of occur-
rence in actual operation.

3.5.2. User Observation Heuristics
[19%, ¢5, ¢7; 4, part 4, annex A]

Specialized heuristics, also called wusability
inspection methods, are applied to systemat-
ically observe system use under controlled
conditions to determine how well people can
use the system and its interfaces. Usability
heuristics include cognitive walkthroughs,
claims analysis, field observations, thinking
aloud, and even indirect approaches such as
user questionnaires and interviews.

3.6. Technigues Based on the Nature of the
Application
[2* c16, c17, c18, c20, c21; 14, c4s8; 8]

The above techniques apply to all kinds of
software. Additional test derivation and exe-
cution techniques are based on the nature of
the software being tested. Examples are:

* Object-oriented software

* Component-based software
* Web-based software

* Concurrent programs

* Protocol-based software

* Communication systems

* Real-time systems

* Safety-critical systems

* Service-oriented software

* Open-source software

* Embedded software

* Cloud-based software

* Blockchain-based software
* Big data-based software

* AI/ML/DL-based software
* Mobile apps

* Security and privacy-preserving software

In some cases, standards such as ISO/IEC/
IEEE 29119 [4, part 4, part 5] provide exam-
ples and support for specifying test cases,
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automating their execution, and maintaining
the test suites, such as Keyword-Driven
Testing [4, part 5].

3.7. Selecting and Combining Techniques
[14% c7s12; 10; 4, part 5]

Combining different testing techniques has
always been a well-grounded means to assure
the required level of SUT quality. Especially
in shift-left developments, methodologies for
adaptive combinations of testing techniques
are part of the state of the practice. The goal
is to improve the effectiveness of testing pro-
cesses by learning from experience and, at the
same time, adapting the technique selection
to the current testing session.

3.7.1. Combining Functional and Structural
[1%, ¢9; 4, part 5]

Scenario-based and structure-based test
techniques are often contrasted as functional
vs. structural testing. These two approaches to
test case selection are seen as complements,
as they use different sources of information
and highlight different problems. Depending
on the different organizational constraints,
such as budgetary considerations, they can
be combined.

3.7.2. Deterministic vs. Random
[1* c9s6]

Test cases can be selected in a determin-
istic way, according to many techniques, or
randomly drawn from some distribution of
inputs, such as is usually done in reliability
testing. Several analytical and empirical com-
parisons have been conducted to analyze the
conditions that make one approach more
effective than the other.

3.8. Tec/miguex Based on Derived Knowledge
[2% c19, c20; 14*, c7]

Testing techniques can integrate evidence
and knowledge from different research
areas and contexts. For this, approaches

and methodologies are used to support
testing activity and improve its effective-
ness. Innovative approaches include using
digital twins or simulation methodologies
and frameworks, exploiting ML and gami-
fication facilities, and using (simulated) neu-
ronal networks.

4. Test-Related Measures
[2%, c24s5; 147, c10; 4, part 4]

Testing techniques are like tools that help in
achieving specific test objectives. To evaluate
whether a test objective is reached, well-de-
fined measures are needed. Measurement is
usually considered fundamental to quality
analysis. Measurement may also be used to
optimize test planning and execution. Test
management can use several different process
measures to monitor progress. (See Software
Engineering Measurement in the Software
Engineering Management KA for informa-
tion on measurement programs. See Software
Measurement in the Software Engineering
Process KA for information on measures.)
According to the definition in [4, part
4], testing techniques can be classified
according to the degree of coverage they
can achieve. Coverage may vary from 0%
to 100%, excluding possible infeasible tests
(i.e., tests that cannot be executed). Thus, for
each specification-based, structure-based,
and experience-based test technique, the
associated coverage measures and the pro-
cedure for evaluating that coverage must be
determined. Examples of coverage measures
could be the percentage of branches covered
in the program flow graph or the percentage
of functional requirements exercised among
those listed in the specifications document.
It is important to consider that moni-
toring facilities can dynamically compute the
ratio between covered elements, and the total
number may also be considered. Additionally,
especially in the case of structure-based
testing techniques, appropriate instrumenta-
tion of the SUT may also be necessary.
However, the proposed set of testing mea-
sures can also be classified from different



viewpoints — from the point of view of those
providing and allowing an evaluation of the
SUT based on the observed test outputs and
of those that evaluate the thoroughness or
effectiveness of the executed test suites.

4.1. Evaluation of the SUT
[2% c24s5]

Usually, indicators (i.e., measurable infor-
mation) can be used to determine whether a
SUT is performing as expected and achieving
its expected outcomes. The indicators, some-
times known as key performance indica-
tors (KPIs), are strongly connected with the
adopted evaluation measures, methods, data
analysis and reporting.

4.1.1. SUT Measurements That Aid in Planning
and Designing Tests
[14%, ¢10; 10, c6; 4, part 1, part 4]

All the testing measures proposed in [4,
part 4] can be used for planning and guiding
testing activities. Additionally, in the shift-
left development process, specific measures,
such as deployment frequency, lead time,
mean time to recovery (MTTR), and change
failure rate, are also commonly adopted
to plan and manage the testing activities
and results.

4.1.2. Fault Types, Classification and Statistics
[1* c13s4, c13s5, c13s6]

The testing literature is rich in classifications
and taxonomies of faults that can be generic or
specific to a context or quality attributes (such
as the usability defect classification, the tax-
onomy of HW/SW security and privacy vul-
nerabilities and attacks, and the classification
of cybersecurity risks). To make testing more
effective, it is important to know which types
of faults may be found in the SUT and the rel-
ative frequency with which these faults have
occurred in the past. This information can be
useful in making quality predictions and in
process improvement (See Characterization in

the Software Quality KA).
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4.1.3. Fault Density [1* c13s4; 14*, c10s1]
Traditionally, a SUT can be evaluated
by counting discovered faults as the ratio
between the number of faults found and the
SUT size. Because of the semantics-based
definition of faults, additional measurements
can be considered, such as fault depth (the
minimal number of fault removals needed to
make a SUT correct) and fault multiplicity
(the number of atomic changes needed to
repair a single fault).

4.1.4. Life Test, Reliability Evaluation
[1% c15, 2% c11; 14% c1s3]

A statistical estimate of software reliability can
be used to evaluate if testing can be stopped
or if the SUT is mature enough for the next
release. Reliability evaluation is taking a piv-
otal role in the Cloud (and Fog) contexts [18].

On the one hand, validation and verifica-
tion proposals are focusing on maintaining
the high level of reliability and availability
required by the cloud (fog) services. On the
other, testing activities are exploiting the
computational power of the cloud (fog) envi-
ronment to speed up the reliability evaluation
and drastically reduce its costs.

4.1.5. Reliability Growth Models
[1* c15, 2* c11s5]

Reliability growth models predict reli-
ability based on observed failures. They
assume, in general, that when the faults
that caused the observed failures have been
fixed (although some models also accept
imperfect fixes), the product’s reliability
will increase. There are many published
reliability growth models. Notably, these
models are divided into failure-count and
time-between—failure models.

4.2. Evaluation of the Tests Performed
[4, part 4, c6]

The behavior of the SUT is generally veri-
fied by executing test suites, which are pivotal
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in finding defects. Therefore, from both the
researchers’ and practitioners’ perspectives, a
fundamental part of software testing is com-
paring test suites. Usually, evaluating the test
suites means comparing techniques for test
case generation that produce the test cases.
Different criteria are used for that purpose,
such as coverage criteria or mutation anal-
ysis criteria.

4.2.1. Fault Injection
[1% c2s5]

In fault injection, some faults are artificially
introduced into the SUT before testing. When
a test suite is executed, some of these injected
faults are revealed, as are, possibly, some faults
that were already there. In theory, depending
on which and how many artificial faults are dis-
covered, the testing effectiveness can be eval-
uated, and the remaining number of genuine
faults can be estimated. In practice, statisti-
cians question the distribution and represen-
tativeness of injected faults relative to genuine
faults and the small sample size on which any
extrapolations are based. Some also argue that
this technique should be used with great care
because inserting faults into the SUT incurs
the obvious risk of leaving them there.

4.2.2. Mutation Score [1% c3s5; 6]
In mutation testing, the test suite effective-
ness measure is calculated as the ratio of killed
mutants to the number of generated mutants.
The higher the test suite effectiveness value,
the better, since it indicates a stronger ability
to discover the most real injected faults.

4.2.3. Comparison and Relative Effectiveness of
Different Techniques [1% c1s7; 5; 9]

Relative effectiveness compares different
testing techniques against a specific property,
such as the number of tests needed to find the
first failure, the ratio of the number of faults
found through testing to all the faults found
during and after testing, and how much reli-
ability was improved. Several studies have

already been conducted to compare dif-
ferent techniques analytically and empirically
according to each notion of property (or effec-
tiveness) defined.

5. Test Process
[4, part 1, part 2, part 3; 2% c8]

Testing concepts, strategies, techniques and
measures need to be integrated into a defined
and controlled test planning process to test
output evaluation. The test process supports
testing and provides guidelines to those respon-
sible for different testing activities to ensure
the test objectives are met cost-effectively.

As described in [4, part 2], the test process
is a multi-layered process activity that includes
the test specification at the organizational,
management and dynamic levels. The organi-
zational test process defines the steps for cre-
ating and maintaining test specifications, such
as organizational test policies, strategies, pro-
cesses, procedures, and other assets [4, part 2].

The test management process defines the
steps necessary for management: planning,
monitoring and control, and completion.

Finally, the dynamic test process specifies
the steps for design and implementation, envi-
ronment setup and maintenance, execution,
and test incident reporting.

In the remainder of this section, some

practical considerations about the test process
specification, management, and execution, as
well as a summary of the test sub-processes
and activities included in the organizational,
management and dynamic levels as in [4, part
2], are provided.
5.1. Practical Considerations [4, part 1]
Testing processes should allow the automation
of different testing phases and should rely on
the controllability, traceability, replicability,
and risk/cost estimation of the performed
activities. In the remainder of this section,
commonly applied test steps are described,
compatible with and applicable to all life cycle
models. (See Software Life Cycles in the
Software Engineering Process KA.)



5.1.1. Attitudes/Egoless Programming
[1% c16; 2%, ¢3]

An important element of successful testing
is a collaborative attitude toward testing and
quality assurance (QA) activities. Managers
have a key role in fostering a favorable recep-
tion toward failure discovery and correction
during software development and mainte-
nance. For instance, in shift-left change in
development, such as Agile, communication
and collaboration among testers and devel-
opers are considered vital for achieving suc-
cessful testing results.

5.1.2. Test Guides and Organizational Process
[1%, c12s1, 2% ¢8; 4, part 2, part 3;
14*, ¢7s3]

Various aims can guide the testing phases. For
example, risk-based testing uses the product
risks to prioritize and focus the test strategy,
and scenario-based testing defines test cases
based on specified software scenarios and
backlog lists. Usually, the organization of
the test process includes defining test policies
(i.e., specifying the purpose, goals, and overall
scope of testing) and test strategies (i.e., spec-
ifying the guidelines about how testing will
be carried out). For instance, in shift-left
developments, a test strategy should include
at least the following data: the purposes (e.g.,
defined through user stories), the objectives
(e.g., a test suite), the scope (the SUT), and
the environment and methods (e.g., how, and
where the test suite is run).

5.1.3. Test Management and Dynamic Test
Processes

[1%, c12; 4, part 2, part 3, 14%, ¢7s3]

Test activities conducted at different levels (see
Section 2, Test Levels) should be organized
— with people, tools, policies, and measures
— into a well-defined process integral to the
life cycle. Test process management includes
different subprocesses such as planning, mon-
itoring, control, and completion, whereas the
dynamic test process includes test design and
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implementation, test environment set-up and
maintenance, test execution, and test incident
reporting.

5.1.4. Test Documentation
[1%, c8s12; 147, ¢7s8; 4, part 3]

According to [4, part 3], documentation is
integral to the formalization of the test pro-
cess. Test documents can be classified into
three hierarchical categories: organizational
test documentation, test management docu-
mentation and dynamic test documentation.
Organizational test documentation includes
the information necessary for documenting
the test policy and the organizational test
strategies. Test management documentation
includes the test plan, test status report and
test completion report. Finally, dynamic test
documentation includes the following docu-
ments: test specification (test design specifica-
tion, test case specification and test procedure
specification), test data requirements, test
environment requirements, test data readiness
report, test environment readiness report, and
test execution documentation (such as actual
results, test results, test execution log and inci-
dent report).

Test documentation should be produced and
continuously updated with the same quality
as other software engineering documenta-
tion. Test documentation should also be under
the control of software configuration man-
agement. (See the Software Configuration
Management KA.)

5.1.5. Test Team
[1%, c16; 2* c23s5; 4, part 2, part 3]

Formalizing the testing process may also
involve formalizing the testing team’s orga-
nization. Considerations of cost, schedule,
maturity levels of the involved organizations
and criticality of the application can guide the
decision. The testing team can be composed of
members involved (or not) in the SUT devel-
opment (i.e., having or not having an unbi-
ased, independent perspective) or internal (or
external) personnel. Shift-left development
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does not strongly distinguish among testing
team members because the test suite is defined
and updated according to the SUT develop-
ment and delivered code.

5.1.6. Test Process Measures
[1%, c18s3, 147 c10; 4, part 1, part
2, part 3]

Managers use several measures for the
resources spent on testing, as well as for the
relative fault-finding effectiveness of the var-
ious test phases, to control and improve the
testing process, as well as to provide informa-
tion for managing process risks. Therefore,
monitor and control testing must define
required data and information and state how
to obtain them. The test measures may cover
the number of specified, executed, passed,
and failed test cases, among other elements.
These measures can also be combined with
specific process metrics such as residual risk,
cumulative defects open and closed, test case
progress, and defect detection percentage.
Evaluation of test phase reports can be com-
bined with root-cause analysis to evaluate
test process effectiveness in finding faults as
early as possible. Such an evaluation can be
associated with risk analysis. Moreover, the
resources deemed worth spending on testing
should be commensurate with the applica-
tion’s use and criticality. Different techniques
have different costs and yield different confi-
dence levels in product reliability.

5.1.7. Test Monitoring and Control
[4, part 1, part 2]

Monitoring and Control comprise an important
sub-process of the test management process as
in [4, part 2], useful for collecting data and
information required during test management
and assessment. Usually, monitoring and con-
trol activities are executed in parallel with
the test execution, and sometimes, data col-
lected might prompt revision of overall pro-
cess planning. Monitoring assures that testing
process activities comply with a specific test
plan to trace the requirements satisfaction

and mitigate the identified risks satisfactorily.
During test monitoring and control, specific
documentation (test reports) can regularly be
produced to help assess and document the
test activity.

5.1.8. Test Completion
[14% c7s11; 4, part 3]

A decision must be made about how much
testing is enough and when a test stage can
be completed. Therefore, the purpose of Zest
Completion, a sub-process of the test man-
agement process as in [4, part 2], is to ensure
that test requirements are satisfied and ver-
ified, test reports are completed, and test
results are communicated to relevant stake-
holders. Thoroughness measures, such as
achieved code coverage or functional cov-
erage, and estimates of fault density or oper-
ational reliability, provide useful support but
are not sufficient in themselves. The decision
also involves considerations about the costs
and risks incurred by possible remaining
failures, as opposed to the costs incurred
by continuing to test (See Test Selection
and Adequacy Criteria in Section 1.2, Key
Issues.) As for the other activities, in this
stage, specific documentation is produced
(e.g., test completion report) and communi-
cated to the relevant stakeholders.
5.1.9. Test Reusability [14* ¢3; 9]
It is necessary to add complexity and time for
test planning and design to achieve reusability
of the testing artifacts, such as the test case
or execution environment, which is desired
when test development is costly, time-con-
suming, and complex.

Test reusability collects and classifies the
testing knowledge (test cases and test results)
to make this information searchable and
usable for creating new tests or re-executing
an existing one. Suitable knowledge-based
repositories should be configured and man-
aged to test reusability so changes to soft-
ware requirements or design can be reflected
in changes to the tests.



The reusability of test cases is pivotal in
feature-based or product-line development
and regression testing. Test reusability also
relates to maintainability because reusability
can reduce the cost and effort involved and
improve a test’s effectiveness.

5.2. Test Sub-Processes and Activities
[1%, c1s12; 1% c1259; 4, part 2]

In the remainder of this section, the main
testing activities and sub-processes are briefly
introduced.

5.2.1. Test Planning Process
[1%, c12s1, c12s8; 11; 4, part 2]

Like all other aspects of project manage-
ment, testing activities must be planned.
According to [4, part 2], key aspects of test
planning include identification and coor-
dination of personnel, identification of the
test objective and completion criteria, defi-
nition of test facilities and equipment, cre-
ation and maintenance of all test-related
documentation, and risk planning and man-
agement for possible undesirable outcomes.
These activities can be organized at three
different levels: (1) process management
(i.e., identification of test policies, strate-
gies, processes, and procedures), (2) organi-
zational management (i.e., definition of the
test phase, test type and test objective), and
(3) design and implementation (i.e., defini-
tion of the test environment, the test execu-
tion process and monitoring, the completion
process, and reporting).

5.2.2. Test Design and Implementation
[1% c12s1, c12s3; 11]

Generation of test cases is based on the
level of testing to be performed and the
chosen testing techniques. According to
the dynamic test process, as described in [4,
part 2], preconditions of the test case gener-
ation are the identification of test objectives
and the selection of the appropriate testing/
demonstration techniques. Test generation
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focuses on implementing and executing test
cases. It often relates to tooling (i.e., using
specific software, also called a zesz cases gen-
erator). 'This software accepts inputs (such
as source code, test criteria, specifications,
or data structure definitions) and uses them
to generate the test suites. Sometimes, a
test case generator can determine expected
results by using a specific oracle facility. This
contributes to the full test automation of the
overall testing process.

5.2.3. Test Environment Set-up and
Maintenance

[1%, c12s6; 2% c8s1; 14* ¢13s2; 4, part 2; 11]

According to the dynamic test process, as
described in [4, part 2], test environment
development and setup involve identifying the
testing infrastructure. This includes selecting
or developing the facilities, hardware, soft-
ware, firmware, and procedures to conduct
the testing activity. The testing environment
can be simulated, controlled, and executed
in vitro or in vivo. Developing the test envi-
ronment also involves setting up monitoring
and logging facilities useful for documenting
the testing activities and assessing the result
obtained. The testing environment should
be compatible with the other software engi-
neering tools used.

5.2.4. Controlled Experiments and Test
Execution

[1%, c12s7, 14* c4s7, 14* c556; 4, part 2]

Execution of tests should embody a basic
principle of scientific controlled experimenta-
tion — everything done during testing should
be performed and documented specifically
and clearly enough that another person could
replicate the results. Hence, testing should
be performed following documented proce-
dures using a clearly defined version of the
SUT. Especially during acceptance testing,
controlled experiments like A/B testing can
also be performed to statistically evaluate
user preferences between different versions

of the SUT.
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5.2.5. Test Incident Reporting
[1% c13s4, c13s9, c13s11; 2%, c8s3; 14,
c7s8; 4, part 3; 12]

According to the dynamic test process, as
described in [4, part 2], testing incidents and
reporting focus on the well-defined test data
collection process (i.c., identifying when a test
was conducted, who performed the test, what
software configuration was used, and other rel-
evant identification information). This process
and the collected evidence can be leveraged
for accountability purposes. Test reporting
can involve suitable audit systems to identify
unexpected or incorrect test results and record
them in a problem reporting system. These
data form the basis for later debugging and
fixing the problems observed as failures during
testing. Also, anomalies not classified as faults
could be documented if they later become
more serious than first thought. Test reports
are also inputs to the change management
request process. (See Software Configuration
Control in the Software Configuration
Management KA.)

Hence, the 7Test Incident Reporting process
focuses on identifying the relevant stakeholders’
incidents that could be used to determine what
aspects of software testing and other processes
need improvement and how eftective previous
approaches have been.

Part of the incident reporting is also eval-
uating test results to determine whether the
testing has been successful. In most cases,
“successful” means that the software per-
formed as expected and did not have any major
unexpected outcomes. Not all unexpected out-
comes are necessarily faults; sometimes they
are determined to be simply noise. Before a
fault can be removed, an analysis and debug-
ging effort is needed to isolate, identify, and
describe it. When test results are particularly
important, a formal review board may be con-
vened to evaluate them.
5.3. Staffing [1%, c16; 4, part 3]
According to [4, part 3], staffing includes
defining roles, activities, and responsibilities,

specifying hiring needs, and defining
training needs. Staffing affects project
risk because the team’s expertise might
undermine the ability to discover faults,
to address changing requirements, to meet
deadlines, and increase/reduce mainte-
nance costs.

The roles, activities and responsibilities
definition establishes the following roles
and responsibilities: the activity leader and
supporting personnel, the test-related roles
and their corresponding responsibilities,
and the person responsible for providing the
test item(s).

Depending on the development lifecycle
adopted, typical testing roles include but
are not limited to scrum master/test lead,
QA /test analyst, test designer, test security/
performance engineer and consultant, test
environment expert, test executor and test
automation consultant or architect.

Hiring needs require the identification
of specific requirements for which addi-
tional testing personnel are needed to com-
plete the testing process (as well as when that
personnel is needed and the desired skills).
Depending on the business needs, staffing
could take different forms, from internal
transfers to external hires or even consul-
tants and/or outsourced resources.

Finally, the training needs specification
includes the definition of the required skill
level. It also includes the specification of
the training activities (such as classroom
training, self-paced training, comput-
er-based training, or mentoring) useful
for providing the necessary skills to the
selected staff.

6. Software Testing in the Development
Processes and the Application Domains
[2% 8, c15; 14%, c4s8, c7]

Whatever development process is adopted,
testing remains a fundamental activity.
However, specific testing activities or termi-
nologies could be used in some cases, such
as the adopted development life cycle and/or
the application domain.



6.1. Testing Inside Software Development

Processes [2% c8; 14% 7]
In the remainder of this section, peculiarities
of testing inside the different development
processes are provided.

6.1.1. Testing in Traditional Processes
[1* c18; 14* 7]

There are a variety of traditional processes,
essentially based on the SUT development
principles, that can be adopted within the
organization. Sequential, V, spiral model and
iterative are just some of the processes com-
monly applied. (Software Life Cycles in the
Software Engineering Process KA provides
a detailed description of each.) However, in
all these processes, testing is just one per-
ceived activity; it is sometimes performed at
the end of the process, with a tangible risk
of SUT development failure in case of devi-
ation of the end-user needs or assessment
issues. During recent years, to evaluate and
control the overall quality of the SUT, initia-
tives such as test maturity model integration
(TMMi) and software process improvement
(SPI) have been established. As a result, dif-
ferent existing frameworks have been updated
or improved for the purpose, such as soft-
ware process improvement and capability
determination (SPICE), capability maturity
model integration (CMMI), and unified pro-
cess (UP).

For instance, CMMI is one of the most
referenced models; it can guide key SUT
stakeholders in gaining control of their devel-
opment and maintenance processes. It is, in
fact, a well-defined set of best practices in
software testing that improves SUT quality
by increasing customer satisfaction.

Presented in the early 2000s, the UP
model can be seen as a predecessor of the
shift-left movement. UP encourages testing
early by offering several mechanisms to inte-
grate testing more closely with the software
development effort, making testing a distinct
discipline. Furthermore, UP promotes an iter-
ative development approach for continuously
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verifying quality. It also enables use cases and
risk to drive SUT development and allows
strategic change management. UP groups the
SUT increments and SUT iterations into four
phases: inception, elaboration, construction,
and transition.

UP can be considered both iterative and
Agile — Iterative because all the core activ-
ities are repeated throughout the SUT devel-
opment project, and Agile because the defined
phases of the chosen lifecycle can be repeated
until the SUT meets requirements (both
functional and non-functional), achieves
the defined objectives, and guarantees the
target quality.

6.1.2. Testing in Line with Shift-Left Movement
[2% ¢3, c8s2; 4, part 1; 10, 3, c5]

The shift-left testing movement promotes the
adoption of testing in the early stages of soft-
ware development to detect and remove faults
as early as possible to increase overall SUT
quality and reduce the cost and risks of testing
activities. Different development life cycles,
such as Agile, DevOps and TDD, belong to
the shift-left movement. (See Agile Methods
in the Software Engineering Process KA.)

In shift-left-based development, different
testing aspects should be considered:

A. 'The internal code quality: Regression,
prioritization, security, and privacy could
be the primary objectives of the internal
code quality (Section 2.2). Usually, unit
testing and integration testing are the
targeted levels (Section 2.1), whereas
structure-based is the main testing tech-
nique (Section 3.2).

B. Business needs: Compliance and confor-
mance, usability, security, and privacy
are just a subset of the possible objectives
of the business needs aspect (Section
2.2). Concerning this aspect, testing
focuses more on the system and accep-
tance test levels and on end-user expec-
tations, as well as usage-based (Section
3.5) and scenario-based techniques
(Section 3.1.8).
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C. Perceived quality: Alpha, beta, instal-
lation, usability, security, and privacy
could be the primary objectives of the
internal perceived quality (Section 2.2).
Perceived quality usually focuses on the
acceptance test level and is achieved
by applying techniques based on soft-
ware engineering’s intuition and experi-
ence (Section 3.3) and usage-based and
fault-based techniques, such as mutation
testing (Section 3.4).

Quality assurance: Performance instal-
lations, security, and privacy confor-
mance and compliance are some main
objectives of quality assurance (Section
2.2). This aspect may involve all testing
levels, and the selection of the testing
technique depends on the objective and
the level chosen.

Examples of testing inside the different

shift-left movements implementation are:

* In Agile process development, testing
activities involve all stakeholders (such as
customers and team personnel) and target
the identification of where improvements
could be made in future interactions.
Managing the risk of regression defects,
meeting changing requirements, and
managing their impact on test artifacts
are also objectives of the Agile testing
process. Typically, test automation is used
to manage the regression risk, and explor-
atory testing may be used to manage a
lack of detailed requirements.

In TDD, the test cases mainly target the
software requirements specifications and
acceptance, and they are generated in
advance of the code being written. The
tests are based on the user stories and
implemented using automated compo-
nent testing tools. TDD is a practice that
requires defining and maintaining unit
tests and can help clarify the user needs
and software requirements specifications.

https://www.autosar.org/
https://www.automotivespice.com/

* In testing automated builds and contin-
uous integration (for instance, DevOps),
the SUT is continuously developed, inte-
grated, delivered and monitored. In this
process, regression testing is continuously
performed to timely identify and cor-
rect development and integration issues.
Additionally, quick testing techniques,
such as smoke testing, are commonly
used during continuous integration to
guarantee that the SUT is testable before
it is released to the operational stage.

6.2. Testing in the Application Domains
[2% c15; 14%, c4s8]

Usually, an application domain is strictly con-
nected to a certain reality. Therefore, testing
approaches could be tailored to the needs of
the domain and customized to the adopted
technologies.

Each domain-specific environment has
specific aspects and solutions for software
testing such as:

* Automotive domain testing: Due to the
complexity of automotive systems, this
testing involves aspects of almost every
software component and its interaction
with hardware. Security testing, simula-
tion testing, reliability/life cycle testing,
integrated systems testing, data acquisi-
tion and signal analysis testing, quality
testing and inspection, and stress/strain
testing are just some of the various
testing performed in this domain. Several
supporting standards guide and manage
automotive testing according to the pecu-
liarity, the component, or the quality
aspect that should be assessed. Autosar?
and Automotive SPICE? are examples.

* Internet of things (Iol') domain testing:
'This testing involves application develop-
ment, device management, system man-
agement, heterogeneity management,
data management, and tools for analysis,
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https://www.automotivespice.com/

deployment, monitoring, visualization
and research. Additionally, security, pri-
vacy, communications and user/compo-
nent interaction should be considered
in the quality assessment. For example,
guidelines and specific conformance test
suites for cybersecurity assessment of the
IoT' SUT are detailed in the European
Telecommunications Standards Institute
(ETSI) standards.*

Legal domain testing: One of the most
important aspects in the legal domain
is the management of highly sensitive
users; therefore, security, privacy and
trust are the most common areas of focus
for testing. Additionally, because of the
copious data collected and exchanged,
performance testing of the data reposi-
tory, testing to show accurate commu-
nication and integration testing, as well
as consistency and compliance testing,
should also be done. Finally, because the
legal domain is characterized by specific
nomenclature and jargon, involving legal
domain experts in test case generation
is common practice to ensure a focus on
desired characteristics and quality.
Mobile domain testing: This testing is
usually for usability, functional, con-
figuration and consistency assessment.
Mobile-specific aspects such as screen
resolution, global positioning system
(GPS), operating systems, and device
manufacturers should also be consid-
ered during testing activity. Finally, the
type of mobile applications (native or
web apps) and their interactions need
to be tested. For example, the W3C
Web and Mobile Interest Group® pro-
vides facilities, guidelines and ad hoc test
suites useful for developing and testing

O 0 g O\ LUt

https://www.etsi.org/
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web-based content, applications and
services.

Avionics domain testing®: Usually, avi-
onics systems include several indepen-
dent or loosely coupled components
and commercial off-the-shelf products.
Therefore testing needs to include very
general processes and approaches appli-
cable at both the system and the process
levels. Functional and non-functional,
integration, communication operational,
stress, safety, and security testing are
examples of possible approaches. As in
other domains, supporting standards
such as Aeronautical Radio Incorporated
(ARINC) Standards and ASTM
F3153-15 can be used for reference.
Healthcare domain testing: Healthcare
domain testing should ensure quality
in areas such as secure and reliable data
exchange, stable performance, privacy,
and safety. Interoperability, usability, per-
formance and compliance with industry
regulations, as well as security and safety
standards (such as the Health Level Seven
(HL7),” Fast Healthcare Interoperability
Resources (FHIR),® Digital Imaging
and Communications in Medicine
(DICOM),? Health Insurance Portability
and Accountability Act (HIPAA),° and
the General Data Protection Regulation
(GDPR)") should also be considered.
Embedded domain testing: Because soft-
ware and hardware are tightly coupled
in embedded systems, testing activity
should assess functional and non-func-
tional attributes of both software and
hardware.

Graphical user interface (GUI) testing:
GUI testing involves assessing the Ul
(user interface) (i.e., the elements of the

https://www.w3.0rg/2013/07/webmobile-ig-charter.html

WWW.astm.org.
https://www.hl7.org/
https://thir.org/
https://www.dicomstandard.org/

10  https://www.hhs.gov/hipaa/.
11  https://eur-lex.europa.ew/legal-content/ EN/TXT/PDF/?uri=CELEX:32016R0679.
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user objects that we can see). Thus, GUI
testing targets the design pattern, images,
alignment, spellings, and the overall look
and feel of the Ul. Testing approaches
based on finite-state machines, goal-
driven approaches, approaches based on
abstractions and model-based approaches
can be considered.

Gaming: Gaming applications and soft-
ware are causing increased demand for
new approaches and ways to ensure their
quality and security. Among the specific
testing techniques, playtesting is one of
the mostadopted. In this case, real gamers
(usually from the development of testing
teams) repeat quality control methods at
many points of the game execution or
design process. GUI testing, function-
ality testing, security testing, console
testing, compliance testing and perfor-
mance testing can also be considered.
Real-time domain testing: Real-time
testing wusually focuses on assessing
timing constraints and deterministic
behavior. Unit, integration and system
testing approaches can be adopted.
Communication, interaction and behav-
ioral testing can also be performed.
Service oriented architecture (SOA)
testing: This testing focuses mainly on
correctly implementing business pro-
cesses and involves unit and integration
testing approaches.  Structure-based,
specification-based and security testing
can be applied. The testing activity varies
according to the environment, organiza-
tion and set of requirements that should
be satisfied.

Finance domain testing: This testing
covers a wide range of aspects, from man-
aging financial requirements to assessing
financial applications and software pro-
grams. As in other domains, domain-spe-
cific knowledge (such as that held by, for
example, banks, credit unions, insur-
ance companies, credit card companies,
consumer finance businesses, invest-
ment funds and stock brokerages) could
be necessary to apply the testing process

effectively and efficiently. Customer satis-
faction, usability, security, privacy, third-
party component and apps integrations,
real-time issues, and performance are
some of the most important challenges in
this domain.

7. Testing of and Testing Through
Emerging Technologies

Software development was driven by emerging
trends such as the widespread diffusion of
mobile technology, cloud infrastructures
adoption, big data analysis and the software
as a service paradigm, which highlighted new
constraints and challenges for testing.

7.1. Testing of Emerging Technologies

* Testing artificial intelligence (AI), ML/
deep learning (DL) [13]: AI, ML and
DL are being applied in practice. Most
business applications will have some
form of AI, ML or DL. Because of their
peculiarities (for instance their non-de-
terministic nature), testing such appli-
cations is challenging and might be very
expensive. Three main aspects should be
considered in defining bugs and testing
in this scenario: the required condi-
tions (correctness, robustness, security,
and privacy); the AI, ML or DL items
(e.g., a bug might exist in the data, the
learning program, or the framework
used); and the involved testing activities
(test case generation, test oracle iden-
tification and definition, and test case
adequacy criteria). In all these appli-
cations, a prototype model is first gen-
erated based on historical data. Then,
offline testing, such as cross-validation,
is conducted to verify that the generated
model satisfies the required conditions.
Usually, after deployment, the model is
used for prediction purposes by gener-
ating new data. Finally, the generated
data is analyzed through online testing
to evaluate how the model interacts
with user behaviors.



* Testing blockchain [15]: The commonly
used testing techniques for validating
blockchains and related applications
such as smart contracts are stress testing,
penetration testing and property testing.
However, depending on the specific
situation, different aspects should be
considered during the testing of a block-
chain-based SU'T, such as the following:

o Platform type: The level of valida-
tion depends on the type of platform
used for implementation — public or
private. The latter requires a much
greater testing effort.

o Connection with other applications:
Integration testing should be per-
formed to check consistency when
the blockchain works with various
applications.

o Performance: Specific strategies to
handle many transactions should be
conceived to guarantee a satisfactory
performance level. Qualitative and
quantitative metrics, such as average
transaction validation latency and
security, should also be considered.

Testing the cloud [1% ¢10s10, 2%, c18]:
Testing the cloud validates the quality of
applications and infrastructures deployed
in the cloud by considering both func-
tional and non-functional properties. The
focus is to identify problems posed by
systems residing in the cloud. Therefore,
testing activities use techniques to val-
idate  cloud-based services’ perfor-
mance, scalability, elasticity and security.
Moreover, testing should also focus on
compatibility and interoperability among
heterogeneous cloud resources when dif-
ferent deployment models are used (e.g.,
private, public or hybrid).

Testing concurrent and distributed appli-
cations [1% c10s10, 2% c17]: One main
aspect of testing dynamic, complex, dis-
tributed or concurrent applications 1is
dealing with multiple operating systems
and updates, multiple browser platforms

SOFTWARE TESTING 5-27

and versions, different types of hardware,
and many users. For such testing, it’s dif-
ficult to use testing approaches based on
the classical hierarchy between compo-
nents or systems; instead, solutions based
on input/output, dependency threads,
or dynamic relations often work better.
Additionally, the possibility of continuous
integration and deployment of the dif-
ferent components forces the testing pro-
cess to include approaches for managing
continuous test operation, injection, mon-
itoring and reporting according to the
time, bandwidth usage, throughput, and
adaptability constraints. Finally, there is
still the need for solutions that allow the
reusability of testing knowledge, archi-
tectures, and code to make the testing
activity more effective and less expensive.

7.2. Testing Through Emerging Technologies

Testing through ML [13]: AI, ML or DL
techniques are successfully used to reduce
the effort involved in several activities in
software engineering (such as behavior
extraction, testing or bug fixing). These
techniques aid both researchers and prac-
titioners in adopting and identifying
appropriate methods for their desired
applications. There is a growing interest
in adopting ML techniques in software
testing because most software testing
issues are being formulated as ML
learning problems. Indeed, AI, ML or
DL is used in almost all software, such as
test case design, the oracle problem, test
case evaluation, test case prioritization
and refinement, and mutation testing
automation. Indeed, they reduce main-
tenance efforts and improve the overall
SUT quality because of their ability to
analyze large amounts of data for classi-
tying, triaging and prioritizing bugs more
efficiently. From a DevOps perspective,
Al, ML and DL solutions can be used
in SUT automation authoring and exe-
cution phases of test cases, as well as
in the post-execution test analysis that
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identifies trends, patterns and impact on
SUT testing activity.

Testing through blockchain [15]: Testing
becomes complicated when different
teams, domain experts and users need
to work together in collaborative, large-
scale systems and complex software sys-
tems to achieve a common goal. This is
mainly because of the time constraint,
data sharing policies, acceptance cri-
teria and trusted coordination among
the teams involved in the testing process.
Blockchain technologies can be exploited
to improve software testing efliciency
and avoid using centralized authority to
manage different testing activities. This
help ensure distributed data management,
tamper resistance, auditability, and auto-
matic requirement compliance to improve
the quality of software testing and devel-
opment. Blockchain-based approaches for
trusted test case repository management
and to support test-based software and
security testing are also considered.
Testing through the cloud [17]: Testing
through the cloud refers to SUT testing
performed by leveraging scalable cloud
technologies. Usually, the cloud is used
for testing purposes wherever large-scale
simulations and elastic resources are nec-
essary. Indeed, this can affect cost reduc-
tion, development, and maintenance of
the testing infrastructure (scaffolding),
and online validation of systems, such as
ML-based SUT. A particular situation is
the testing of the cloud through the cloud
itself. 'This is an example of the inter-
section between testing of and testing
through emerging technologies. The
applications and infrastructures deployed
in the cloud can be tested, exploiting the
cloud’s bandwidth.

Testing through simulation [1%, ¢3s9]:
Simulation is an important technology
for testing activity because it represents
a valid means for evaluating SUT execu-
tion under critical situations or disasters
or assessing specific behaviors or recov-
ering activities. The complexity of the

testing approach might vary according to
the complexity of the simulation system
adopted and might involve closed-loop
testing; assessing the devices, communi-
cations, and interface; and use of real-time
data (e.g., voltage, current and breaker
status). Simulation testing can be applied
to each development level and might
involve mathematical, formal represen-
tation of the real system, environment,
network conditions and control devices.
Simulation testing is currently adopted
in many application domains. Especially
in the automotive and embedded domain,
among the different proposals, one of the
emerging solutions for simulation testing
is hardware-in-the-loop (HIL) simula-
tion testing. In this case, real signals sent
to the SUT to simulate reality and to test
and design the iteration are continuously
performed while the real-world system is
being used.

¢ Testing through crowdsourcing [16]:
Crowdsourced testing (also known as
crowdtesting) is an approach for involving
users and experts in the testing activity.
Thus, crowdsourcing users represent the
dispersed, temporary workforce of mul-
tiple individual testers. Testing through
crowdsourcing is mainly used for testing
mobile applications because it ensures
technology diversity and customer-cen-
tric validation. However, crowdtesting is
not a substitute for in-house SUT vali-
dation. It represents a valid means of
detecting failures and issues because it
involves many individuals (testers) in dif-
ferent locations, who are using different
technologies in different conditions and
who have different skills and knowledge.

8. Software Testing Tools
[1% c12s11, 14%, 7]

Several testing tools focus on the SUT pecu-
liarities and needs. This section describes the
main issues and challenges concerning testing
tools and categorizes them.



8.1. Testing Tool Support and Selection
[1% c12s11, 14% 7]

Testing involves many labor-intensive tasks
since it involves running numerous program
executions and handling a considerable
amount of information. Appropriate tools
can alleviate the burden of tedious cler-
ical operations and make them less error-
prone. Sophisticated tools can support test
design and generation, making them more
effective.

Guidance for managers and testers on
selecting testing tools is crucial, as the right
tool significantly impacts testing efficiency
and effectiveness. Tool selection depends on
diverse factors, such as development choices,
evaluation objectives and execution facilities.
In general, there might not be a unique tool
to satisfy specific needs, so a suite of selected
tools could be appropriate.

8.2. Categories of Tools
[1% c1, c3, ¢4, 7, c8, ¢9, c12]

Several classifications of testing tools mainly
describe their functionalities, such as the
following:

o Test harnesses (drivers, stubs) [1*, ¢3s9]
provide a controlled environment in
which tests can be launched and the test
outputs can be logged. Drivers and stubs
are provided to execute parts of a SUT to
simulate calling and called modules.

o Test generators [1%, ¢12s11] assist in gen-
erating test cases. That generation can be
random, path-based, model-based or a
mix thereof.

« Capture/replay tools [1*, c12s11] automat-
ically re-execute or replay previously exe-
cuted tests that have recorded inputs and
outputs (e.g., screens).

* Oracle, file comparators, assertion checking
tools [1%, c9s7] assist in deciding whether a
test outcome is successful.

« Coverage analyzers and instrumenters [17,
c4] work together. Coverage analyzers
assess which and how many entities of
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the program flow graph have been exer-
cised among all those required by the
selected test coverage criterion. The anal-
ysis can be done through SUT instru-
menters that insert recording probes into
the code.

Tracers [1%, c1s7] record the history of a
program’s execution paths.

Regression testing fools [1¥, ¢12516] support
the re-execution of a test suite after a sec-
tion of software has been modified. They
can also help select a test subset according
to the change made.

Reliability evaluation tools [1%, ¢8] support
test results analysis and graphical visual-
ization to assess reliability-related mea-
sures according to selected models.
Injection-based tools [1%, c3, c7s7] focus on
introducing or reproducing specific prob-
lems to confirm that the SUT behaves
suitably under the corresponding con-
dition. That can involve managing some
input or triggering of events. Usually,
two categories of injection-based tools
are considered: attack injection and fault
injection.

Simulation-based tools [1%, c3s9] verify and
validate selected properties. Usually, they
exploit specific models to enable the auto-
mated execution of scenarios to assess
whether the SUT operates as expected or
to predict how the SUT would respond to
defined inputs. Typical simulation-based
tools are classified into tools for verifi-
cation, tools for collaboration, tools for
optimization, tools for testing automated
systems and tools for evaluating software
concepts.

Security testing tools [1%, c8s3, c12s11]
focus on specific security vulnerabilities.
Among these are tools for attack injec-
tion, penetration testing and fuzz testing.
Test management tools [17, ¢12s11] include
all the supporting tools that assure effi-
cient and effective test management and
data collection.

Cross-browser testing tools [1%, c8s3] enable
the tester to quickly build and run user
interface test cases across desktop, mobile
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and web applications to check whether
the SUT looks and works as expected on
every device and browser.

* Load testing tools [1%, ¢3] collect valuable
data and evidence for SUT performance
evaluations.

* Defect tracking tools [1%, c3] help keep
track of detected faults during the SUT
development projects. These tools behave
as tracking systems and allow end users
to enter fault reports directly.

« Mobile testing tools [1%, c8s3] support the
implementation and testing of mobile
apps by allowing several repeated Ul tests
over the application platform, develop-
ment on real mobile devices or emulators,
testing of the mobile apps on real-time

implementations and collection of data
for specific QA measures.

o API testing tools [1%, ¢7s2] check whether

the applications meet functionality, per-
formance, reliability, and security expec-
tations throughout the automation of
specific API tests.

Web application testing tools [1%, c8s3], also
referred to as web testing tools, support
validating the functionality and the per-
formance of web-based SUTs. These tools
provide relevant insight and data for dif-
ferent stakeholders, such as developers,
server managers, and infrastructure admin-
istrators. These tools address issues, or bugs
before SUTs are available to end users.
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Software Engineering

Operations

ACRONYMS

API Application

Programming Interface
ATDD Acceptance Test Driven

Development
CD Continuous Delivery
CI Continuous Integration
CpPU Central Processing Unit
CONOPS | Concepts of Operations
DBMS Database Management System
TaC Infrastructure as-Code
TaaS Infrastructure as a Service
1T Information technology
ITIL IT Infrastructure Library
KPI Key Performance Indicator
MR Modification request
MVP Minimum Viable Product
PaaS Platform as a Service
PR Problem Report
QA Quality Assurance
SaaS Software as a Service
SLA Service-Level Agreement
SRE Site Reliability Engineering
TDD Test Driven Development

INTRODUCTION

Software engineering operations refers to the
set of activities and tasks necessary to deploy,
operate and support a software application
or system while preserving its integrity and
stability. These activities include the deploy-
ment and configuration of the software in the

targeted operational environments and the
monitoring and management of the applica-
tion while it is in use (until it is retired). Once
the application is operational, software engi-
neering operations must manage any defects
that are uncovered, any changes made to
the system software environment and hard-
ware equipment over time, and any new user
requirements that surface.

Software engineering operations is an inte-
gral part of system and software life cycle
processes [3]. The Software Engineering
Operations Knowledge Area (KA) is related
to all other aspects of software engineering.

Specialized software and information tech-
nology (IT) operations engineers have tradi-
tionally provided and managed I'T operations
services. Best practices in software engi-
neering operations were initially published by
the I'T infrastructure library (ITIL) and were
quickly accepted by the industry. These prac-
tices were summarized and published in the
IEEE 20000 standard [1].

Historically, operations and computing
centers were often located in organizational
silos separate from software development
activities. Progressive organizations now
co-locate software development, software
maintenance and some software engineering
operations activities (often provided as a ser-
vice and often coined DevOps). Benefits of
this approach are the elimination of the orga-
nizational silos that separated these software
activities and the sharing of common pro-
cesses and tools. The rising popularity and
growing acceptance of DevOps practices
[2¥] and related standards [4], including an
ever-evolving set of tools, reflect this trend.
DevOps aims at automating and continu-
ously evolving software engineering activities
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Figure 6.1. Breakdown of Topics for the Software Engineering Operations KA.

to ensure high-quality software and to satisty
users who demand quicker turnaround from
software engineers.

In this context, the role of software engi-
neers involved in software engineering oper-
ations has significantly evolved from 2015
to 2025 with the emergence of practices like
Infrastructure-as-Code  (IaC), Platform-
as-Code (PaC), Agile infrastructure, soft-
ware-defined  architectures/systems,  and
the availability of infrastructure as a ser-
vice (IaaS) and platform as a service (PaaS)
solutions. Tasks traditionally performed by
IT infrastructure engineers are increasingly
automated and made available as a service,
enabling application developers to perform
software engineering operations tasks inde-
pendently as part of their daily project activ-
ities. For example, application developers in
many organizations can now directly use IaaS
and PaaS to deploy applications in produc-
tion environments and to monitor different
aspects of those applications without directly
involving operations engineers.

Having end-to-end resources and desired
state configuration managed like code, using
practices such as IaC and PaC, provides
value in the form of improved repeatability,

consistency/standardization, known security
policies, self~documentation (transparency),
single source of truth, configuration control,
and scalability. From an engineering perspec-
tive, the important point is that nearly any-
thing that impacts a software product directly
or indirectly should be considered for repre-
sentation as code.

To perform software engineering oper-
ations tasks, some organizations use the the
concept of Platform Engineering and Site
Reliability Engineering (SRE) [6] to increase
productivity and software quality. The role of
platform engineering is to build and manage
self-service platform capabilities that can
be used by software engineers to develop,
deploy, and operate software applications. On
the other hand, the role of SRE is to mon-
itor, automate, and improve software opera-
tions with respect to non-functional aspects,
including availability, performance, latency,
and security. SRE is also responsible for
change management, emergency response,
capacity planning, and overall efliciency of
software systems.

Although many organizations still use con-
ventional IT operations management pro-
cesses, this KA focuses mainly on the role
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of software engineers in operations in the
emerging contexts of DevOps, IaC, PaC, and
Agile infrastructure practices.

In this context, we identify two main soft-
ware engineering roles related to operations:
Operations engineer, who is responsible for
developing operations services made available
as a service and accessible through an appli-
cation programming interface (API), and
software engineer, who can use the resulting
operations services (available as a service) to
independently deploy and manage applica-
tions without directly involving I'T operations
specialists.

BREAKDOWN OFTOPICS FOR
SOFTWARE ENGINEERING
OPERATIONS

The breakdown of topics for the Software
Engineering Operations KA is shown in
Figure 6.1.

1. Software Engineering Operations
Fundamentals

This first section introduces the concepts and
terminology that form an underlying basis for
understanding the role and scope of software
engineering operations.

1.1. Definition of Software Engineering
Operations [1, c353.3][3, c6s6.4.12]

In this Guide, the term software engineering
operations refers to the knowledge, skills, pro-
cesses and tools used by software engineers or
their organization to ensure that a software
product, including IT infrastructure, system
software, and application software, operates
well during development, maintenance and in
real conditions of operations.

In ISO/IEC/IEEE 12207 [3], an ogperator
is defined as an “individual or organization
that performs the operations of a system.” The
SWEBOK Guide modifies that definition for
the term operations engineer, which refers to
a software engineer who executes software

engineering operations processes. In this role,
an operations engineer works closely with sofz-
ware engineers to develop and offer operations
services such as the following:

* Provisioning, deployment, configura-
tion, and support for containers and vir-
tual servers,

* Designing and offering on-demand ser-
vices (e.g., environment on demand, ver-
sioning, continuous integration (CI) and
testing, deployment, and surveillance) for
use by software engineering,

* Monitoring and troubleshooting system
and application software incidents by
running diagnostics, documenting prob-
lems and resolutions, prioritizing prob-
lems, and assessing impact of issues,

* Performing, automating and imple-
menting  appropriate  processes  for
security, data protection and failover
procedures,

* Overseeing capacity, storage plan-
ning and database management system
(DBMS) performance,

* Providing documentation and technical
specifications to I'T staff for planning and
implementing new or upgraded I'T infra-
structure and system software.

ISO/IEC/IEEE 20000-1 describes the
need to develop and enhance the profes-
sional competencies of operations engineers.
To achieve this goal, software organizations
should address the following:

* Staff recruitment: To validate job appli-
cants’ qualifications and competencies,
including their professional certifications,
and to identify their strengths, weak-
nesses and potential capabilities against
the operations engineer job description,
core technologies and computer languages
mastered and overall experience,

* Resource planning: To staff new or
expanded engineering operations ser-
vices, plan the use of new technology,
plan the assignment of service manage-
ment staff to development project teams,
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* Operations Plan and Supplier Management

* Development and Operational Environment

* Software Availability, Continuity and Service Levels
* Software Capacity Management

* Software Backup, Disaster Recovery and Failover

* Software and Data Safety, Security, Integrity, Protection and Controls

Operations Planning
Processes

~

Operations Delivery

* Operational Testing, Verification and Acceptance
* Deployment/Release Engineering
* Rollback and Data Migration

Operations Control
Processes

Processes

* Incident and Change Management

* Monitor, Measure, Track and Review
* Operations Support

* Service Reporting

* Problem Resolution

Figure 6.2. Software Engineering Operations Processes and Activities

develop succession planning and other
staffing gaps created by staff turnover,

* Resource training and development:
To identify training and development
requirements and create a training and
development plan that meets them,; also,
to provide timely, effective delivery of
operations services. Operations engineers
should be trained in the relevant aspects
of service management (e.g., via training
courses, self-study, mentoring and
on-the-job training), and their teamwork
and leadership skills should be developed.
A chronological training record should
be maintained for each individual, with
descriptions of the training provided.

1.2. Software Engineering Operations Processes
[2* s1][3, c656.4.12]

ISO/IEC/IEEE 20000-1 is the reference stan-
dard that presents an overview of operations pro-
cesses. It specifies requirements for the design,
transition, delivery and improvement of oper-
ations services. The ISO/IEC/IEEE 20000-1
describes five main operations process groups:

service delivery processes, release processes,
control processes, resolution processes and rela-
tionship processes. These operations processes
are further categorized as technical processes
in ISO/IEC/IEEE 12207 [3]. Operations pro-
cesses, from the perspective of a software engi-
neer, contain the activities and tasks necessary
to deploy, configure, operate and support an
existing software system or product while pre-
serving its integrity. This international standard
describes four main operations process activi-
ties: 1) prepare for the operation: that requires
to define an operation strategy; 2) perform
the operation: which consist of operating and
monitoring; 3) manage the results of operation:
where anomalies are recorded and addressed;
and finally 4) support the customer: which
means to give assistance and consultation to
any user of the operations services.

Finally, ISO/IEC/IEEE 32675 [4] intro-
duces a number of software engineering opera-
tions activities using an Agile and a minimum
viable product (MVP) perspective. This stan-
dard recognizes the influence of DevOps as a
set of principles and practices that enable better
communication and collaboration between
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relevant stakeholders for the purpose of spec-
ifying, developing, continuously improving,
and operating software and system products
and services. These processes and activities are
the responsibility of operations engineers.

For the purpose of the SWEBOK Guide,
engineering operations activities can be
grouped into three main operations processes
(see Figure 6.2) that each contain a number of
operations activities, which are described in
the following sections of this chapter:

* Operations Planning (section 2),
* Operations Delivery (section 3),
* Operations Control (section 4).

Each software engineering operations pro-
cess includes activities performed during the
pre delivery and post delivery stages of a soft-
ware project. Software engineering opera-
tions planning activities occur during the pre
delivery stage. These activities are covered in
this chapter.

1.3. Software Installation
[1, c3, c6s2][2% c3s3.1]

Before a software application or update can
be made available to the users (i.e. released
in production), the operations engineer must
install the software as part of its deployment.
To install the software, the engineer might
have to uninstall previous versions, configure
the software for its target destination, and
create the necessary directories, registry files
and environment variables on the target des-
tination. This is often done using a scripting
language. The installation of the software to
the appropriate locations is typically done
electronically, but in the case of embedded
systems, it might require the use of a phys-
ical medium. Once the software is installed,
a verification step is conducted to ensure that
the operation succeeded.

1.4. Scripting and Automating [2*, c9]
As part of software engineering operations,
repetitive tasks are automated to reduce

delays, increase quality, and ensure a con-
sistent and stable operational environment.
This is typically achieved using scripting
languages, which are basic programming
languages. Automating operations enables
a quicker reaction in case of a failure and,
therefore, results in less downtime and fewer
severe incidents, as alerts are sent immedi-
ately. Automating such tasks is also a good
way to ensure standardization of operations in
an organization. It also constitutes the basis
for the development of operations made avail-
able as a service. Refer to section 6 for further
discussion on operations tools.

1.5. Effective Testing and

Troubleshooting [2% c3]
Software engineering operations is respon-
sible for ensuring the stability of the system.
For this purpose, software must be thor-
oughly tested before it is released (deployed
in production and made available to users).
Because manual testing is inefficient, error-
prone and non-scalable, testing must be auto-
mated as much as possible throughout the
entire software process. Also, because the
time available for testing is limited, regres-
sion testing and test coverage strategies (the
selective retesting of a software application,
or component, to verify that the software
to be deployed will not cause unintended
effects) play an important role in software
engineering operations.

When errors are found (in production after
the software is released or during internal
testing phases), software engineers and soft-
ware operations engineers need to troubleshoot
hardware and software incidents by running
diagnostics, documenting problems and res-
olutions, prioritizing problems, and assessing
the impact of the issues. The cost — in both
time and money — of repeating full testing
on a major piece of software is significant.
To ensure that the requested problem reports
(PRs) are valid, the operations engineer should
replicate and verify problems by running the
appropriate tests. Testing certain aspects of
the software in production can be particularly
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challenging. For example, when software per-
forms critical functions, bringing it off-line to
test might be difficult. Generally, testing the
software in the production system context is
challenging (sometimes impossible) and could
require the use of testing techniques such as
canary testing and dark launches. The Software
Testing KA provides additional information
and references on testing.

1.6. Performance, Reliability and

Load Balancing [1, c6s6.2]
Software operations engineers plan for per-
formance, reliability and load balancing early
in software projects to ensure they meet the
project requirements. (See section 1.2 to 1.7
of the Software Requirements KA). A cur-
rent trend is for software engineers to design
and use infrastructure/operations services to
adjust dynamically (e.g. scalability) the infra-
structure according to the demand. Using
DevOps practices enables operations engi-
neers to anticipate these needs early and pro-
vide infrastructure services that software
engineers can use and test during the devel-
opment stages of a project.

2. Software Engineering Operations
Planning

This topic introduces some of the generally
accepted techniques used in software engi-
neering operations planning. Operations
engineers must deal with a number of key
issues to ensure software operates effectively.
Operations engineers should document their
software engineering operations steps and
tools, using any type, form or medium suit-
able for the purpose (e.g., Wikis, documents,
and more). The following topics are typically
considered suitable as evidence of well docu-
mented operations:

* Policies and plans,

* Service documentation,
* Procedures,

* Processes, and

* Process control records.

2.1. Operations Plan and Supplier Management
[1, c4s4.1][3, c6s6.1]

Software engineering operations planning
should comprise part of the process of trans-
lating project requirements and the needs of
the developers and maintainers into services,
and it should provide a road map for directing
progress. This process often involves the prod-
ucts and services of suppliers that must be
well coordinated to ensure quality service.
ISO/IEC/IEEE 20000-1 describes planning
activities, as well as ISO/IEC/IEEE 12207,
which lists the activities operations engineers
considers from human, technical and system
perspectives.

2.1.1.  Operations Plan
[1, c4s4.1][3,c656.4.12.3a]
Whereas software development typically

lasts from some months to a few years, the
operations phase usually lasts many years.
Therefore, estimating resources is a key ele-
ment of operations planning. Software engi-
neering operations planning should begin
with the decision to develop a new software
product and should consider its maintenance
and operations requirements early. A concept
document should be developed, followed by an
operations and maintenance plan [1,c7s2], and
both should address the following:

* Scope of the operations and software
maintenance,

* Adaptation of the software engineering
operations process and tools,

* Identification of the software engineering
operations organization,

+ Estimate of software engineering opera-
tions and maintenance costs.

The next planning step suggests to develop
a software engineering operations plan, or
concept of operations (CONOPS). This plan
should be prepared during software develop-
ment and should specify how users will request
software modifications and report problems or
issues when the software will be operational.



SOFTWARE ENGINEERING OPERATIONS  6-7

Software engineering operations planning is
addressed in ISO/IEC/IEEE 12207 [3] and
ISO/IEC/IEEE 32675 [4]. The standards pro-
vide guidelines for planning, implementing,
maintaining, automating and supporting pro-
duction software. Finally, at the highest plan-
ning level, the operations organization must
conduct business planning activities (e.g., bud-
getary, financial and human resources), just as
all the other divisions of the organization (refer
to the Software Engineering Management
KA). ISO/IEC/IEEE 20000-1 recommends
that the operations plan addresses issues asso-
ciated with a number of planning perspectives,
including the following:

* The roles and responsibilities for imple-
menting, operating and maintaining the
new or changed service,

* Activities to be performed by customers
and suppliers,

* Changes to the existing service manage-
ment framework and services,

* Communication to the relevant parties,

* New or changed contracts and agreements
to align with changes in business needs,

* Staffing and recruitment requirements,

+ Skills and training requirements (e.g.,
users, technical support),

* Processes, measures, methods and tools
to be used in connection with the new or
changed service,

* Capacity management,

* Financial management,

* Budgets and timescales,

* Service acceptance criteria, and

* The expected outcomes from operating
the new service, expressed in measur-
able terms.

This plan ensures that an operational
strategy is defined, conditions for correct
operations are identified and evaluated, the
software is tested at scale to operate in its
intended environment, and surveillance is
provided to ensure responsiveness and avail-
ability of the software by ensuring constant
support. At the individual request level (e.g.,
problem report (PR) or modification request

(MR)) planning is required. Once individual
requests are received and validated, the release
or version planning activity requires that oper-
ations engineers perform the following tasks:

* Identify the target availability dates of
individual requests,

* Agree on the content of subsequent
releases or versions,

* Identify potential conflicts and develop
alternatives,

* Assess the risk of a given release and
develop a rollback and data migration plan
(see section 3.3) in case problems arise,

* Inform all stakeholders.

2.1.2.  Supplier Management
[1, c7s3][3, c6s6.1]

Supplier management ensures that the orga-
nization’s suppliers and their performance are
managed appropriately to support the seam-
less provision of quality products and services.
ISO/IEC/IEEE 12207 lists the activities that
the operations engineer will perform to estab-
lish an agreement to acquire suppliers’ products
and/or services. From an operations engineer’s
perspective, the nature of the relationship
with suppliers and the approach should be
determined by the nature of the products and
services needed in a project. Managing sup-
pliers of services related to operational soft-
ware includes managing out-sourced services
and cloud services, like IaaS and PaaS.

2.2. Development and Operational

Environments [2* c9]
The overall software process requires the use
of different environments at different stages.
These are typically defined as the development
environment, the testing or quality assurance
(QA) environment, the preproduction envi-
ronment, and the production environment.
To build quality into the product and reduce
the risks associated with the release of soft-
ware in the production environment (whether
the release is associated with new function-
ality or software defects), engineers must
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ensure that the different environments are all
coherent and synchronized with the produc-
tion environment.

For this reason, DevOps recommends that
the creation of all the different environments
be automated and built from a single code
repository. In mature DevOps organizations,
the creation of the different environments is
completely automated and made available as
a service. Also, all environments need to be
built from the same code source (single source
of truth) to ensure that all the environments
are synchronized with the production envi-
ronment in which the software is released.
This leads to the concept of infrastructure as

code (IaC).

2.3. Software Availability, Continuity, and

Service Levels [1, c656.3]
Service availability and continuity must be
managed to ensure that customer commitments
are met. Because service availability and conti-
nuity are defined as nonfunctional requirements
early in a project (see the Software Quality
KA), operations engineers will ensure that
the proper infrastructure is planned, designed,
implemented and tested. Software availability
is measured and recorded, and unplanned
nonavailability is investigated and appropriate
actions taken. Service reports produce avail-
ability and continuity indicators of operations
services against service-level targets.

The service-level management process moni-
tors the agreed software level of service, including
workload characteristics, performance and
availability trend information and customer
satisfaction analysis. Defining, agreeing to and
documenting service-level agreements (SLAs)
can help clarify the full range of operations
services obligations provided. The Software
Maintenance KA provides additional infor-
mation and references about SLAs.

2.4. Software Capacity Management
[1, c6s6.5]

ISO/IEC/IEEE 20000-1 describes the need
to ensure that the software product has the

capacity, at all times, to meet current and
future agreed-upon demands created by the
customer’s business needs. The current and
expected business requirements for services
should be understood in terms of what the
business needs in order to deliver its prod-
ucts or services to its customers. Business pre-
dictions and workload estimates should be
translated into specific requirements and doc-
umented. The reaction to variations in work-
load or environment should be predictable;
data on current and previous components, as
well as resource utilization at an appropriate
level, should be captured and analyzed to sup-
port the process.

Capacity management is the focal point
for all performance and capacity issues. The
process should directly support the develop-
ment of new and changed services by sizing
and modeling these services. A capacity plan
documenting the actual performance of the
infrastructure and the expected requirements
should be produced at a suitable frequency (at
least annually), considering the rate of change
in services and service volumes, informa-
tion in the change management reports, and
changing customer business requirements.
The capacity plan should document costed
options for meeting business requirements
and recommend solutions to ensure achieve-
ment of the agreed-upon service-level targets
as defined in the SLA. The technical infra-
structure and its current and projected capac-
ities should be well understood to ensure
optimal software operations.

2.5, Software Backup, Disaster Recovery, and
[1, c6s6.3.4]

Failover

ISO/IEC/IEEE 20000-1 also proposes that
the following should be quickly available
following a major service failure or disaster
to ensure continuity planning and testing:
backups of data, documents and software,
and any equipment or staft necessary for ser-
vice restoration. Backup and data recovery
are important activities; successful recovery
is especially vital. The need for successful
recovery should influence which backup and
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recovery methods are used (full or incre-
mental), how frequently restore points are
established, where they are stored, and how
long they are retained.

Preparedness and regular test of backup,
disaster recovery, and failover should be con-
stantly rehearsed as changes to the produc-
tion environment are made. This is another
essential activity that is triggered when outage
assessments are done. Testing disaster recovery
requires stopping the service, identifying the
checkpoint state and triggering the failover
process. Software engineers should under-
stand that failure is inevitable and that auto-
mated failover daemons can reduce recovery
time drastically. To achieve this, software
applications should include failure-handling
logic; this must be planned during develop-
ment. DevOps can help organizations that
want to reduce failovers and disasters by auto-
mating and launching tests as often as possible
to ensure readiness in case of a failure or cata-
strophic event.

2.6. Software and Data Safety, Security,
Integrity, Protection, and Controls
[1, c6s6.6]

The need to manage information secu-
rity effectively within all service activities is
described in ISO/IEC/IEEE 20000-1. This
is done by conducting a software risk assess-
ment on the security and availability of infor-
mation. Operations engineers should strive to
enforce the following controls:

a. Senior management should define their
information security policy, communi-
cate it to staff and customers, and act to
ensure its effective implementation,

b. Information security management roles
and responsibilities should be defined
and allocated to post holders,

c. A representative of the management team
should be assigned the role of monitoring
and maintaining the effectiveness of the
information security policy,

d. Staff with significant security roles should
receive information security training,

e. All staff should be made aware of the
information security policy,

f. Expert help on risk assessment and con-
trol implementation should be available,

g. Changes should not compromise the
effective operation of controls, and

h. Information security incidents should
be reported following incident manage-
ment procedures, and a response should
be initiated.

In line with the evolution of DevOps,
DevSecOps is promoting the integration
of security early and throughout the soft-
ware process, which includes the integra-
tion of different security mechanisms and
tools at the operations level. The goal is to
automate the detection and correction of
security issues as early as possible in the
overall process.

3. Software Engineering Operations
Delivery

This topic introduces some of the gener-
ally accepted processes used during software
engineering operations delivery (ISO/IEC/
IEEE 20000-1): SLA, service reporting,
service continuity, availability management,
budgeting and accounting for IT services,
capacity management, and information secu-
rity management.

3.1. Operational 1esting, Verification, and
Acceptance [2* ¢10] [3, c656.3.5.3d]

Software engineers plan and execute soft-
ware verification as early as possible, using
test-driven development (TDD) and accep-
tance test-driven development (ATDD)
techniques and tools that ensure that opera-
tional testing is ongoing during the develop-
ment of the software, not only at the end of
a project. DevOps plays an important role in
developing and automating software testing
services and integrating different tools to
improve software productivity and quality.
(See TDD and ATDD in the Software
Testing KA.)
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3.2. Deployment/Release Engineering
[2*,c12] [3,C6s6.3.5.3d]

A software operations engineer’s main
responsibility relates to the deployment and
release of software to ensure its continued
performance. As defined in [2¥], “deploy-
ment is the installation of a specified ver-
sion of software to a given environment (e.g.,
deploying code into an integration test envi-
ronment or deploying code in production),”
whereas “release is when we make a feature
(or set of features) available to all our cus-
tomers or a segment of customers (e.g., we
enable the feature to be used by 5% of our
customer base).” Release processes include all
the activities related to release management.
ISO/IEC/IEEE 12207 [3] lists release con-
trol activities and explains the need to iden-
tify and record release requests, identify the
software system elements in a release fol-
lowed by approval, and track the releases in
their specified environments.

DevOps advocates integrating develop-
ment and operations in the same team to
improve software engineering operations
efficiency. In traditional software processes,
when an application is ready for deployment,
it is transferred from a development team to
an operations team that is responsible for
deployment, which is mostly done manually.
This results in processes that are inefficient
from both a time and a quality perspective.
To improve the efficiency of the deployment
process, DevOps calls for automating the
different deployment steps, including pack-
aging the code, generating configuration
files, restarting the servers, configuring the
servers and databases, installing the soft-
ware on the different servers, launching the
execution of the application, and executing
smoke testing.

Different release engineering strate-
gies can be used to reduce the risks asso-
ciated with software releases. ‘These
strategies can be grouped into two main cat-
egories: environment-based release strate-
gies and application-based release strategies.
Environment-based release strategies use a

staging environment to support the release
of a new version of an application. In other
words, the basic strategy involves deploying
the new version of the application to a staging
environment. Application-based release strat-
egies are based on the use of toggles (e.g., fea-
ture toggles) that make it possible to enable
or disable specific sections of the code (e.g., a
feature) using configuration parameters.

Deployment and release are supported
by automation techniques and tools. The
canary release testing technique is a partial
and time-limited deployment of a change in
a service and an evaluation of that change.
This evaluation helps the operations engineer
decide whether to proceed with a complete
deployment. Similarly, tools that manage the
installation of new software typically observe
the newly started software forawhile, ensuring
that the software doesn’t crash or otherwise
misbehave. The same technique is useful for
observing recent changes; if they do not pass
the validation period, they can be automati-
cally rolled back. The Software Configuration
Management KA provides more information
about the release processes. Once the applica-
tion platform is deployed in the targeted pro-
duction environment, the decision to make
it available to the users (release it) becomes a
business decision.

3.3. Rollback and Data Migration
[2* ¢12][3, c656.4.10.3]

Rollback and data migration are terms used to
describe the process of returning software and
its database to a state where they work prop-
erly. Software engineers ensure that when
a new version of the software and its data-
bases have been modified and deployed to
production, they can easily and quickly be
rolled back in case the new version is causing
defects or product degradation in production.
'This means a planned and rehearsed rollback
is done before a new version of the software
is deployed in production. DevOps processes
automate this process to make it faster; in fact,
the automated surveillance can trigger roll-
back and data migration to a previous state so
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quickly that the end user doesn’t notice that
there was a problem. Both release strategy
categories (described in section 3.2) — envi-
ronment-based release and application-based
release — can be used to support rollback.

3.4. Problem Resolution [1, c8s8.3]
The objective of this operations process is to
minimize disruption to the business through
the identification and analysis of the cause of
software and system incidents and problems.
This approach may require the involvement
of a multidisciplinary team, whose software
engineers and operations engineers investi-
gate, for example, recurring production prob-
lems that might have an underlying cause in
software infrastructure and system compo-
nents. This might require monitoring, logging
and profiling the software and its infrastruc-
ture behavior.

4. Software Engineering Operations
Control

'This topic introduces some generally accepted
techniques used in software engineering
operations control.

4.1. Incident Management [1,c8s8.2]
Incident management is the process of
recording, prioritizing and assessing the
business impact, resolution, escalation and
closure of software incidents. The modern
DevOps approach automates software sur-
veillance using alerts and logs to prevent
minor incidents from becoming major inci-
dents. When an incident occurs, proper anal-
ysis and/or post mortems must be conducted
to find the source of the incident and appro-
priate solutions must be implemented to pre-
vent similar incidents to happen again in
the future.

4.2. Change Management [1,c959.2]
This operations process ensures that all
changes are assessed, approved, implemented

and reviewed in a controlled manner. All
change requests are recorded and classified
(e.g., emergency, urgent, major and minor).
This process assesses the risk of a change
and the need for a rollback strategy in case
of failure. Large systems might require that a
change schedule be planned with the product
manager and end users.

Whereas in traditional software delivery
processes (or software life cycle models), all
changes are delivered as part of new soft-
ware releases (containing multiple changes
related to different aspects of the application
or system) issued at fixed time intervals (e.g.,
every three months), DevOps aims to deliver
small units of change (a single new function-
ality or service, or defect fix, rather than a new
version of an application containing multiple
changes) on demand and independently from
each other. For this purpose, software applica-
tions (or services) must be architected to enable
small, independent software deployments.

4.3. Monitor, Measure, Track, and Review
[2*% c14-15]

Software engineering operations activi-
ties monitor capacity, continuity and avail-
ability. In a DevOps mindset, hope should
not be a strategy; instead, engineers should
be informed about system quality and opera-
tional health with evidence, such as the fol-
lowing key performance indicators (KPI),
which are available to stakeholders in
real time:

* Production system’s
product telemetry,

* Actionable verification and valida-
tion results before and after release to
production,

* End-user activity and resource use,

* Impact analysis results,

* Inter- and intra-related dependencies
required for system operation,

* Configuration changes unrelated to
approved deployment tasks, and

* Security and resilience performance
capability.

monitoring and
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4.4. Operations Support [1, c6, c14s5]
ISO/IEC/IEEE 12207 [3], ISO/IEC/
IEEE 20000-1 [1] and ISO/IEC/IEEE
32675 [4] identify the primary software
engineering operations activities that sup-
port the operations processes — activities
that operate the software product in its
intended environment — and the primary
activities that provide support to the cus-
tomers of the software products. Operations
support activities are initiated at the plan-
ning stage of the project and are then exe-
cuted, which often requires techniques and
tools to proactively monitor the product
and services and react quickly to events
and incidents. Support activities are often

described in SLAs.

4.5. Service Reporting [1,c656.2]
Service reporting aims to produce agreed-
upon, timely, reliable and accurate informa-
tion for decision-making. Each service report
helps demonstrate how an operations ser-
vice has performed and whether it has met
some stated and agreed-upon end-user objec-
tive. Typical service reports address perfor-
mance against service-level targets, as well
as security breaches, the volume of transac-
tions and resource use, incidents and failures,
trend information, and satisfaction analysis.
Operations engineers need to establish auto-
mated systems and tools for measurement to
do the following:

* Determine whether measures are already
available or additional instrumentation
for collection, analysis and reporting
is needed,

* Select or develop a framework and
tools to allow coordination of measure-
ment collection for analysis, reporting
and control.

5. Practical Considerations

This topic introduces practical considerations
for software engineering operations.

5.1. Incident and Problem Prevention
[2%, ¢7]

The overall operations process needs to be
automated as much as possible to prevent inci-
dents and problems, and automated testing
needs to be integrated throughout the process.
Also, product telemetry should be imple-
mented with proper analytics techniques to
detect problems as early as possible to prevent
incidents. For this purpose, data collected
at all layers of the product stack (including
application layer, operating system layer and
infrastructure layer) must be collected and
analyzed. Using product telemetry not only
allows engineers to detect potential issues but
also provides the foundation for identifying
the source of the problem.

5.2. Opemtional Risk Management
[3, c656.4.12.3c4]

Operations engineers must manage a number
of risks. IEEE 2675 [4] defines continuous
risk management as a continuous process that
can be automated to monitor operations con-
stantly for risks that can affect software avail-
ability, scalability and security. Operations
engineers can take measures to automate
the alerts. To decide what events will trigger
an alert, they need to talk with product
owners and software engineers to establish
an agreed-upon level of risk tolerance. Other
perspectives are to choose the deployment
process that is appropriate for the risk profile
of a given service and the risks of exposing
private data.

5.3. Automating Software Engineering

Operations [2% c8]
Automation is playing an important role in
modern software operations. Software engi-
neers achieve the best results when coupling
applications and operations automation.
Although automation primarily focuses on
managing the life cycle of a system or infra-
structure (e.g., user account creation, envi-
ronments and server provisioning, runtime
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config changes), it can also be useful in other
use cases where services can be developed
to help software engineers deploy, test and
debug during development. Trends in oper-
ations automation aim to reduce complexity,
accelerate provisioning of infrastructure,
offer operations services scripts to developers,
define applications, automate deployment
and test workflows.

5.4. Software Engineering Operations for Small

Organizations

Very small organizations (organizations of up
to 25 people) have difficulty applying stan-
dards developed by and for large organiza-
tions, as their requirements can overwhelm
the capabilities of small organizations. This
is where the ISO/IEC 29110 series of stan-
dards is useful, as it provides standards and
guidelines adapted to very small organi-
zations to ensure the quality of their soft-
ware engineering operations [7]. Software
engineers should be aware that operations
processes can be adapted to small organiza-
tions and that the ISO/IEC CD 29110-5-5
will be addressing this purpose.

6. Software Engineering Operations Tools
[1, c5s5¢g][2% c12]

This topic encompasses tools that are par-
ticularly important in software engineering
operations for maximizing the efficient use
of personnel. Automating development,
maintenance and operations-related tasks
saves engineering resources and improves
quality and turnaround. When imple-
mented appropriately, such automated tasks
are generally faster, easier and more reliable
than they would be if they were attempted
manually by software engineers and oper-
ations engineers. DevOps supports such
automation for integrating, building, pack-
aging, configuring, and deploying reliable
and secure systems. It combines devel-
opment, maintenance, and operations
resources and procedures to perform CI,
delivery, testing and deployment.

Continuous delivery (CD) is a software
engineering practice that uses automated
tools to provide frequent releases of new sys-
tems (including software) to staging or var-
ious test environments. CD continuously
assembles the latest code and configuration
from the head into release candidates.

Continuous testing is a software testing
practice that involves testing the software at
every stage of the software development life
cycle. Continuous testing aims to evaluate the
quality of software at every step of the CD
process by testing early and often. Continuous
testing involves various stakeholders, such as
developers, DevOps personnel, and QA and
end-users.

Continuous deployment (aka CD) is an auto-
mated process of deploying changes to pro-
duction by verifying intended features and
validations to reduce risk. Jez Humble and
David Farley [8] pointed out that “[t]he biggest
risk to any software effort is that you end up
building something that isn’t useful. The ear-
lier and more frequently you get working soft-
ware in front of real users, the quicker you get
feedback to find out how valuable it really is.”

6.1. Containers and Virtualization

Different container/virtualization technol-
ogies and management tools (also called
orchestrators) are available to operations
engineers to improve the scalability of appli-
cations and standardize software deployment
across multiple computer and server suppliers.
[4, c6$6.4.12] Operations engineers use their
knowledge of the size and complexity of each
project to identify the best tool for flexibility,
security and monitoring.
6.2. Deployment [2* c12]
Different technologies and tools can be used
to manage software deployments in different
environments. [4, ¢5s5.1] Also, different tools
are usually combined to cover the different
phases and aspects of software deployment,
ranging from the specification of deployment
and configuration using descriptor files to the



6-14 SWEBOK® GUIDE V4.0a

automated deployment and management of
production environment resources.

6.3. Automated Test [2*, ¢10]
To enable fast and constant feedback to the
developers, testing must be automated as
much as possible throughout the entire soft-
ware delivery process, including throughout
development and operations. For this pur-
pose, a testing strategy covering the different
types of test (unit test, integration test, system
test, user acceptance test) must be defined, and
tools to support and automate the different
testing phases must be selected. The automa-
tion of testing is critical to provide continuous
feedback to software engineers developing
code and thereby to improve software quality.
6.4. Monitoring and Telemetry [2% c14-15]
Monitoring and telemetry are key aspects
of software engineering operations. They

collect data at all layers of the software system
(including application, operating system and
server) and extract information that can be
used to analyze and monitor different aspects
of the system to detect issues and follow
the evolution of various properties. James
Turnbull [9] describes a general monitoring
framework architecture used by engineering
operations in many technology organizations.
Implementing monitoring solutions requires
combining different techniques and tools to
collect data at different layers. This includes
logs at the application level, execution traces
at the operating system level and resource
use information (like CPU and memory use)
at the server level. Then, based on the col-
lected data, different analytics techniques
(e.g., statistical analysis and machine learning
techniques) can be used to extract relevant
information. Finally, dashboards can be used
to visualize the extracted information; dif-
ferent dashboards can be developed to display
relevant information to different stakeholders.
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CHAPTER 07

Software Maintenance

ACRONYMS
API Application Programming Interface
CI Continuous Integration
IEC The International Electrotechnical
Commission
IEEE | The Institute of Electrical and
Electronics Engineers
1SO International Organization for
Standardization
KA Knowledge Area
LOC | Lines of Code
MR Modification Request
PR Problem Report
SCM | Software Configuration
Management
SEE | Software Engineering Environment
SLA Service-Level Agreement
SLI Service-Level Indicators
SLO | Service-Level Objectives
SQA | Software Quality Assurance
V&V | Verification and Validation
XaaS | Anything as a Service
INTRODUCTION
Successful software development efforts

result in the delivery of a software product
that satisfies user requirements. As those
requirements and other factors change, the
software product must evolve: Once the soft-
ware is in operation, defects are uncovered,
operating environments change, and new
user requirements surface. The maintenance
phase of the life cycle begins after a warranty

period or after post-implementation support
delivery, but maintenance activities occur
much earlier.

Software maintenance is an integral part
of a software life cycle. However, it has not
received the same degree of attention as
the other software engineering activities.
Historically, software development has had
a much higher profile than software mainte-
nance. This is now changing as organizations
strive to optimize their software engineering
investment by ensuring continuous develop-
ment, maintenance and operation, progres-
sively eliminating the organizational silos
among these areas. The growing acceptance
of DevOps practices and tools have drawn
further attention to the need to continuously
evolve software while ensuring its smooth
operation to satisfy users, who are demanding
quicker turnaround from software engineers
than in the past.

In this SWEBOK Guide, software main-
tenance is defined as the totality of activi-
ties required to provide cost-effective support
for software in operation. Activities to sup-
port software operation and maintenance are
performed during the pre-delivery stage and
during the post delivery stage. Pre-delivery
activities include planning for post-delivery
operations, maintainability and determining
the logistics support needed for the tran-
sition from development to maintenance.
Post-delivery activities include software sur-
veillance, modification, training, and oper-
ating or interfacing with a help desk.

The Software Maintenance knowledge area
(KA) is related to all other aspects of software
engineering. Therefore, this KA description is
linked to all other software engineering KAs
in the Guide.

7-1
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Software
Maintenance
|
| | | | |
Software Key Issues in Software Software Software

| Maintenance Software — Maintenance Maintenance Maintenance

Fundamentals Maintenance Processes Techniques Tools

Definitions and — Technical Issues Software Program

Terminology —» Maintenance Comprehension

Management Processes
- glafture of Tssuess Software
oftware Software Reengineering
Maintenance Sofmare Maintenance
— Maintenance Activities Reverse

Need of Cost and Tasks Engi .
> Software ngineering

Maintenance Software

— Maintenance L, CI/CD, Testing

Evolution of Measurements and Deployment

Software

Categories of
L—» Software

Maintenance

Figure 7.1. Breakdown of Topics for the Software Maintenance KA

BREAKDOWN OF TOPICS FOR
SOFTWARE MAINTENANCE

The breakdown of topics for the Software
Maintenance KA is shown in Figure 7.1.

1. Software Maintenance Fundamentals

This section introduces the concepts and ter-
minology that form a basis for understanding
the role and scope of software maintenance.
Among these concepts are the different catego-
ries of software maintenance, which are essen-
tial to understanding this knowledge area.

1.1. Definitions and Terminology
[1,s3.1][2% c151.2, c252,2]

The purpose of software maintenance is
defined in the international standard for soft-
ware maintenance: ISO/IEC/IEEE 14764
[1]. In the context of software engineering,
software maintenance is essentially one of
many technical processes. The objective of
software maintenance is to modify existing
software while preserving its integrity. The

international standard also emphasizes the
importance of performing some maintenance
activities before final delivery of the software
(pre delivery activities). Software mainte-
nance shares knowledge and tools with soft-
ware development and software operation and
also has its own processes and techniques.

1.2. Nature of Software Maintenance
[2* ¢c1s1.3]

Software maintenance sustains the soft-
ware product throughout its life cycle (from
development through operations and even-
tual retirement). The software is monitored
for capacity, continuity and availability.
Modification requests (MRs) and incident
or problem reports (PRs) are logged and
tracked, the impact of proposed changes is
determined, code and other software arti-
facts are modified, testing is conducted,
and a new version of the software product is
released into operation. Also, training and
daily ongoing support are provided to users.
A software maintainer is defined as a role
or an organization that performs software



maintenance activities. In this KA, the term
sometimes refers to individuals who perform
those activities, to contrast their role with
the software developer’s role.

Maintainers can learn from the developers’
and operators’ knowledge of the software.
Early contact with the developers and early
involvement by the maintainers can reduce
the overall maintenance costs and efforts. An
additional challenge is created when main-
tainers join the project after the initial devel-
opers have left or are no longer available.
Maintainers must understand and use soft-
ware artifacts from development (e.g., code,
tests or documentation), support them imme-
diately, and progressively evolve and maintain
them over time.

1.3. Need for Software Maintenance
[2* c1s1.5]

Software maintenance is needed to ensure that
the software continues to satisfy user require-
ments throughout its life span. Maintenance
is necessary regardless of the type of software
life cycle model used to develop it (e.g., water-
fall or Agile). Software products change as a
result of both corrective and non-corrective
actions. Software maintenance is typically
performed to do the following:

* Correct faults and latent defects

* Improve the design or performance of
operational software

* Implement enhancements

* Help users understand the software’s
functionality

* Adapt to changes in interfaced systems or
infrastructure

¢ Prevent security threats

* Remediate technical obsolescence of
system or software elements

* Retire the software

1.4. Majority of Maintenance Costs
[2*, c4s4.3, c555.2]

It is generally accepted that the relative cost
of error fixing increases in later phases of
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the software life cycle. Maintenance also
uses a significant portion of the total finan-
cial resources attributed throughout the life
of a software. A common perception of soft-
ware maintenance is that it merely fixes faults.
However, studies and surveys over the years
have indicated that most software mainte-
nance — over 80% — is used for enhancing
and adapting the software [3]. Grouping
enhancements and corrections together in
management reports contributes to a mis-
conception that corrections cost more than
they really do. Understanding the categories
of software maintenance helps us understand
the structure of software maintenance costs
— that is, where most of that spending goes
[7]. Also, understanding the factors that affect
the maintainability of software can help orga-
nizations contain costs. Environmental fac-
tors that affect software maintenance costs
include the following:

* Operating environment (hardware and
software).

* Organizational  environment  (poli-
cies, competition, process, product and
personnel).

1.5. Ewolution of Software
[2%, ¢3s3.5]

Software maintenance as an activity that
supports the evolution of software was first
addressed in the late 1960s. Research, by
Lehman and others [8], over a period of twenty
years led to the formulation of eight laws of
software evolution:

* Continuing Change — Software must be
continually adapted, or it becomes pro-
gressively less satisfactory.

* Increasing Complexity — As software
evolves, its complexity increases unless
work is done to maintain or reduce that
complexity.

* Self-Regulation — ‘The program evolu-
tion process is self regulating with close
to normal distribution of measures of
product and process attributes.
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Figure 7.2. Software Maintenance Categories

* Invariant Work Rate — The average
effective global activity rate in an evolving
software package is invariant over the
product’s lifetime.

* Conservation of Familiarity — As soft-
ware evolves, all associated with it (e.g.,
developers, sales personnel and users)
must maintain mastery of its content
and behavior to achieve satisfactory evo-
lution. Excessive growth diminishes
that mastery. Hence, average incre-
mental growth remains invariant as the
system evolves.

* Continuing Growth — Functional con-
tent of a program must be continually
increased to maintain user satisfaction
over its lifetime.

* Declining Quality — The quality of soft-
ware will appear to be declining unless it
is rigorously maintained and adapted to
changes in the operational environment.

* Feedback System — Software evolution
processes constitute multilevel, multi-
loop, multi-agent feedback systems and
must be treated as such to achieve sig-
nificant improvement over any rea-
sonable base.

Key findings of Lehman’s research include
a proposal that maintenance is evolutionary
development and that maintenance decisions
are aided by an understanding of what hap-
pens to software over time. Another way to
think of maintenance is as continued devel-
opment that accommodates extra inputs (or
constraints) — in other words, large software

programs are never complete and continue to
evolve. As they evolve, they grow more com-
plex unless action is taken to reduce that
complexity.

1.6. Categories of Software Maintenance
[1,5s3.1.8][2% c151.8, c3s3.3]

Five categories (types) of software mainte-
nance have been standardized to classify a
maintenance request: corrective, preventive,
adaptive, additive and perfective. ISO/IEC/
IEEE 14764 [1], regroups these maintenance
categories as either corrections or enhance-
ments, as shown in Figure 7.2.
ISO/IEC/IEEE 14764 [1] also defines a

sixth category — emergency maintenance:

* Corrective maintenance: Reactive modi-
fication (or repairs) of a software product
performed after delivery to correct dis-
covered problems.

* Preventive maintenance: Modification of
a software product after delivery to cor-
rect latent faults in the software product
before they occur in the live system.

* Adaptive maintenance: Modification of a
software product performed after delivery
to keep a software product usable in an
evolving environment (e.g., an upgrade to
the operating system results in changes to
the applications).

« Additive maintenance: Modification
of a software product performed after
delivery to add functionality or features
to enhance the usage of the product.



Additive maintenance differs from per-
fective maintenance in that a) it provides
additional new functions or features to
improve software usability, performance,
maintainability or other software quality
attributes, and b) it adds functionality or
teatures with relatively large additions or
changes for improving software attributes
after delivery.

* Perfective maintenance: Modification of
a software product after delivery to pro-
vide enhancements for users, improve-
ment of program documentation, and
recoding to improve software perfor-
mance, maintainability, or other software
attributes.

* Emergency maintenance: Unscheduled
modification performed to temporarily
keep a system operational, pending cor-
rective maintenance.

2. Key Issues in Software Maintenance

A number of key issues must be dealt with to
ensure the effective maintenance of software.
Software maintenance provides unique tech-
nical and management challenges for soft-
ware engineers (e.g., the challenge of finding
a fault in large complex software developed by
someone else.)

Similarly, in an Agile setting, maintainers
and developers are constantly striving to make
sure that clients see the value at the end of
each iteration so maintenance activities have
to compete with the development of new fea-
tures for client approval; Planning for a future
release, which often includes coding the next
release while sending out emergency patches
for the current release, also creates a challenge
in balancing maintenance and development
work. The following section presents tech-
nical and management issues related to soft-
ware maintenance. They are grouped under
the following topics:

* Technical issues.

* Management issues.

* Software maintenance costs.

* Software maintenance measurement.
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2.1. Technical Issues
2.1.1 Limited Understanding
[2%, ¢656.9]

Limited understanding describes a software
engineer’s initial comprehension of software
someone else developed. This is reflected in
how quickly a software engineer can under-
stand where to change or correct the soft-
ware. Research suggests a significant portion
of total maintenance effort is devoted to
understanding the software to be modified.
Consequently, the topic of software compre-
hension is of great interest to software engi-
neers. A number of comprehension factors
have been identified: 1) domain knowledge; 2)
programming practices (e.g., implementation
issues); 3) documentation; and 4) organisation
and presentation issues. Comprehension is
more difficult in text-oriented representation
(e.g., in source code), where it is often difficult
to trace the evolution of software through its
releases or versions if changes are not docu-
mented and the developers are not available
to explain them. Thus, software engineers
may initially have a limited understanding
of the software, and much work must be
done to remedy this. Various techniques can
help engineers understand existing software,
such as visualization and reverse engineering
using tool-based graphical representations
of the code.
212 Testing

[1,56.2][2% c9, c13513.4.4]

Test planning and activities occur during MRs
and PRs processing. The cost of repeating full
testing on a major piece of software is signifi-
cant, in both time and effort. To ensure a soft-
ware modification is validated, the maintainer
should replicate or verify changes by planning
and executing the appropriate tests — for
example, regression testing is important in
maintenance. Regression testing is the selec-
tive retesting of software or a component to
verify that the modifications have not caused
unintended effects. Another challenge is



7-6  SWEBOK® GUIDE V4.0a

finding the time to conduct as much testing
as possible. Coordinating tests can be chal-
lenging for maintenance team members who
are simultaneously working on different prob-
lems. Bringing software offline to test it can
be difficult if the software performs critical
functions. The Software Testing KA pro-
vides additional information and references
on software testing and its subtopic on regres-
sion testing.
2.1.3  Impact Analysis

[1,s5.1.6][2% c13s13.3]

Impact analysis assesses the detailed effects
of proposed changes on existing software.
Software engineers should strive to con-
duct the analysis as cost-effectively as pos-
sible. Maintainers need detailed knowledge
of the software’s structure and content. They
use that knowledge to perform the impact
analysis, which identifies all systems and
software products that would be affected by
a software change request and develops an
estimate of the resources needed to accom-
plish the change. The analysis also deter-
mines the risks involved in making the
change. The change request (originating
from an MR or a PR) must first be analyzed
and translated into software terms. Impact
analysis is performed after a change request
enters the software configuration man-
agement (SCM) process. ISO/IEC/IEEE
14764 [1] states that the impact analysis
tasks do the following:

* Develop an identification scheme
for MRs/PRs.

* Develop a scheme for categorizing and
prioritizing MRs/PRs.

* Determine the procedures for an operator
to submit an MR/PR.

* Identify the information needs and issues
that must be tracked and reported to the
users and identify the measures that pro-
vide feedback on those information needs
and issues.

* Determine how temporary work-arounds
will be provided to the operators.

e Track the
to removal.

* Determine what follow-up feedback will
be provided to the users.

work-around(s)

through

Software maintainers often use the severity
of a PR as a guide when deciding how and
when to fix the problem. The maintainer con-
ducts an impact analysis that identifies the
affected components, develops several poten-
tial solutions, and, finally, recommends a
course of action.

Impact analyses of proposed maintenance
changes often consider various factors such as
the maintenance category, the size of the mod-
ification, the cost involved, the testing needed
to make the modification, and any impacts on
performance, safety and security. Designing
software with maintainability in mind greatly
facilitates impact analysis. More information
can be found in the Software Configuration
Management KA.

2.1.4  Maintainability
[1,s8.8][2% c12512.5.5]

ISO/IEC/IEEE 14764 [1] defines main-
tainability as the capability of the software
product to be modified. Modifications can
include corrections, improvements or adap-
tation of the software to changes in environ-
ment, as well as changes in requirements and
functional specifications.

As an important software quality char-
acteristic, maintainability should be speci-
fied, reviewed and controlled during software
development activities in order to reduce
maintenance costs. When these activities are
carried out successfully, the software’s main-
tainability will benefit. Maintainability is
often difficult to achieve because it is often not
a primary focus during software development.
The developers are typically more focused on
other activities and might not pay enough
attention to maintainability requirements.
This can result in bad architecturing, missing
software documentation or test environments,
which is a leading cause of difficulties in pro-
gram comprehension and subsequent impact



analysis during maintenance. The presence of
systematic and mature software development
processes, techniques and tools helps enhance
the maintainability of software. The Software
Quality KA provides additional information
and references on software maintainability.
Compromised software maintainability
typically increases the burden on software
engineers who maintain the software in the
future; in other words, it creates technical
debt. Technical debt often accumulates when
the need to quickly address corrective, emer-
gency, and additive maintenance tasks, con-
strained by limited time and understanding
of the software, leads to compromises. These
immediate but potentially under-considered
solutions, often not peer-reviewed, contribute
to the accumulation of technical debt. This
practice generally creates a technical debt that
will take additional time and effort to address
during maintenance. Specifically, software
engineers must investigate three areas in

depth when addressing technical debt:

1. Code quality versus relevance: Not all
technical debt is urgent.

2. Alignment with organizational objec-
tives: The software architecture should
reflect the organization’s goals.

3. Process loss: Ensure complementary
skills of software engineers involved.

2.2. Management Issues

2.2.1.  Alignment with Organizational
Obyjectives
[1,59.1.8][2% c2s2.3.1.2, c3s3.4]

This section describes how to optimize soft-
ware maintenance activities and economics
to be aligned with organizational objectives
and the priorities of the business, customers
and users.

In many organizations, initial software
development is project-based, with a defined
time scale and budget. The main goal is to
deliver a product that meets user needs on
time and within budget. In contrast, soft-
ware maintenance aims to extend the life of

SOFTWARE MAINTENANCE 7-7

software and keep it operational for as long
as needed. In addition, it may be driven by
the need to meet user demand for software
updates and enhancements.

In both cases, the economics of software
maintenance is not as visible as those of soft-
ware development. At the organizational
level, it may be seen as an activity that con-
sumes significant resources with no clear,
quantifiable benefit for the organization. As
a consequence, adding new features is often
given higher priority than other maintenance
activities (such as refactoring, security or per-
formance improvement) to meet the goals
and objectives of software customers, as well
as with constraints such as time and budget.
However, such organizational objectives and
constraints must be balanced with software
maintainability and engineering standards to
avoid code decay and technical debt.

Applying product management approaches
to the management of software development
and maintenance can help organizations:

* Understand the total cost of operational
software over its full life cycle.

* Compare the costs and benefits of devel-
oping new software versus enhancing
existing software.

* Resolve staffing and skills issues, as the
same team can be responsible for mainte-
nance and development.

* Focus more on maintainability require-
ments from the start, as the same team
has responsibility for both development
and maintenance.

2.2.2. [1% 56.4.13.3¢]

[2* ¢252.3.1.5, c10s10.4]

Staffing

Although maintenance work is sometimes
perceived as less engaging, this view overlooks
the critical importance of software main-
tainers. Given that maintenance constitutes a
significant portion of software lifecycle activi-
ties, recognizing and valuing the contribution
of maintainers is essential to boosting morale,
performance, and reducing staff turnover.
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Organizations need to design development
and maintenance teams and roles carefully
and provide professional development oppor-
tunities for their staff.
2.2.3.  Process [1*, s6][2% c5]
The software life cycle process is a set of
activities, methods, practices and transforma-
tions that people use to develop and maintain
software and its associated products. At the
process level, software maintenance activ-
ities share much in common with software
development (e.g., SCM is a crucial activity
in both). Maintenance also requires several
activities not found in software development.
(Refer to section 3.2.)
2.24.  Supplier Management
[1%,56.1.2,58.3,58.8.2]

Supplier management ensures that the orga-
nization’s suppliers and their performance are
managed appropriately to support the seam-
less provision of quality products and services
when maintenance is contracted to suppliers.
The nature of the organization’s relation-
ship with suppliers and its approach to sup-
plier management should be determined by
the nature of these products and services.
Contractors can be hired to conduct main-
tenance tasks and outsourcing or offshoring
software maintenance is a major industry.
Outsourcing maintenance means substituting
internal capability with an external supplier’s
capability. Approaches to contracting mainte-
nance include the following:

* Single source or partnership: A single sup-
plier provides all services, or an external
service integrator manages the organiza-
tion’s relationship with all suppliers.

* Multi-sourcing: Products and services
are provided by more than one inde-
pendent supplier. These are combined
into a single (software-enabled) service.
Multi-sourcing in software services is
increasingly common, enabled by the
growth of “anything as a service” (XaaS),

application  programming interfaces

(APIs), and data sources.

Many organizations outsource entire port-
folios of software. Typically, these portfolios
include software that is not mission-critical, as
organizations do not want to lose control of
the software used in their core business. One
major challenge for outsourcers is determining
the scope of the maintenance services required,
the terms of a service-level agreement (SLA),
and the contractual details. Outsourcers need
to invest in good communication infrastruc-
ture and an efficient help desk staffed with
people who can communicate effectively with
customers and users [3]. Outsourcing requires
a significant initial investment and the setup
and review of software maintenance processes
that require automation.

2.2.5.  Organizational Aspects of Maintenance
[1,59.1.8][2% c10]
Organizational aspects of maintenance

include determining which teams will be
responsible for software maintenance. When
using Agile life cycle models, the developer
also conducts maintenance tasks, acting as
both developer and maintainer. Other organi-
zations prefer that the team that develops the
software does not necessarily maintain it once
it is operational. In deciding where the soft-
ware maintenance function will be located,
software engineering organizations must con-
sider each alternative’s advantages and disad-
vantages. There are a number of disadvantages
to having the developer also maintain the
software after it has been put into production,
such as the risk that new development will be
disrupted when the developers need to attend
to failures and the potential loss of knowledge
when developers leave the organization, since
fewer individuals are familiar with the soft-
ware; this could also lead to lower-quality doc-
umentation, as fewer individuals are involved.
However, having a separate maintenance
function also has its challenges, as many soft-
ware engineers do not like limiting their work
to maintenance and may be more likely to



leave for more interesting work. In addition, a
handoff process must be put in place between
developers and maintainers, which sometimes
leads to friction between teams [3].

The introduction of product manage-
ment processes has encouraged a single-team
approach, particularly for developing and
maintaining software that needs to respond
rapidly to changes in customer and user needs.
Because there are many pros and cons to each
option, the decision should be made on a case-
by-case basis. What is important is that the
organization delegates the maintenance tasks
to an experienced group or person and keeps
quality documentation on maintenance tasks
and all changes made to the software, regard-
less of the organization’s structure.

2.3. Software Maintenance Costs

Software engineers must understand the dif-
ferent categories of software maintenance
described in 1.6. Presenting costs trends by
categories of maintenance can show customers
where maintenance effort is spent for each
system supported [7]. The data about main-
tenance effort by category can be also used
to accurately estimate the cost of software
maintenance. Cost estimation is an important
aspect of planning software maintenance.
2.3.1.  Technical Debt Cost Estimation
[1,s6.1.7,58.8.3.6][2% c12.12.5]

Technical debt generally makes code more
expensive to maintain than it has to be.
Technical debt represents the effort required
to fix problems that remain in the code when
an application is initially released by the devel-
opment team. Several techniques and indica-
tors can help engineers measure technical debt,
including, size, complexity and the number of
engineering flaws and violations of good archi-
tectural design and coding practices in the
source code. ISO/TEC/IEEE 14764 provides
suggestions for improving maintainability,
including: ensuring legibility, pursuing struc-
tured code, reducing code complexity, provide
accurate code comments, using identation and
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white space, eliminating language weaknesses
and compiler dependent constructs, facilitate
error-tracing, ensure traceability of code to
design, conduct inspections and code reviews.
A software product needs to evolve, by adding
new features and capabilities, and its codebase
must remain maintainable, easily understood,
and easy to further evolve. A common barrier
to addressing technical debt — or, indeed, of
implementing any potential enhancement —
is the uncertain reward for doing so. That’s
why it’s so important for organizations to
determine the following:

* 'The quality of their current software.

* The extent of their technical debt.

* The potential savings from investing in
quality enhancement.

* 'The impact of current quality issues on
their business.

Furthermore, technical debt is only one factor
of several contributing to excess unplanned
work; team or process issues may also need to
be understood and addressed. Modern tooling
can help detect such issues, which means tech-
nical debt should not be handled in isolation
but through an examination of its root causes.
2.3.2.  Maintenance Cost Estimation

[1,$6.2.2,59.1.4,59.1.9-10]
[27% ¢12512.5.6]

An estimate of software maintenance costs
should be prepared early in the software plan-
ning process [1, ¢6s1.4]. The costs should be a
function of the scope of maintenance activi-
ties. ISO/IEC/IEEE 14764 [1, ¢7s2.4] iden-
tifies various factors that should be included,
such as the following:

 Travel to user locations.

* Training for maintainers as well as users.

* Cost and annual maintenance for the
software engineering environment (SEE)
and software testing.

* Personnel costs (e.g., salaries, benefits).

* Otherresource costs, such as consumables.

* Software license maintenance costs.
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* Product changes, program management.
* Field service engineers.
* Renting facilities for maintenance.

Moreover, as the maintenance and devel-
opment efforts progress, the estimates should
be amended. Historical measurement data
should be used as inputs to estimate main-
tenance costs. Additionally, cost estimates
are also required during impact analysis of
individual MR or PR. The cost estimating
method (e.g., parametric model, comparison
to analog systems, use of empirical and his-
torical data) should be described. Estimates of
individual MRs or PRs typically include the
estimated effort associated with executing a
change, resource estimates and an estimated
timeline for implementing the change.

2.4. Software Maintenance Measurement
[1,56.1.7][2% c12]

Measurable software maintenance artifacts
include maintenance processes, resources and
products [2% ¢12s12.3.1]. Measures include
size, complexity, quality, understandability,
maintainability and effort. One useful measure
is the amount of effort (in terms of resources)
expended for corrective, preventive, adaptive,
additive and perfective maintenance.

Complexity and technical debt measures
of software can also be obtained using avail-
able tools. These measures constitute a good
starting point for the measurement of soft-
ware quality. Maintainers should determine
which measures are appropriate for a spe-
cific organization based on that organiza-
tion’s needs. Software measurement programs
are discussed in the Software Engineering
Management KA.

The software quality model described in
the Software Quality KA describes software
product and process measures specific to soft-
ware maintenance. Measurable characteristics
of maintainability include the following:

* Modularity measures the degree to which
a system or software is composed of com-
ponents that are independent, such that

a change to one component has minimal
impact on other components.

* Reusability measures how well a compo-
nent can be reused.

* Analyzability measures the effort or
resources the maintainer must expend
either to diagnose deficiencies or causes
of failure or to identify components to
be modified.

* Modifiability measures the maintain-
er’s effort associated with implementing
a specified modification without intro-
ducing defects or degrading existing
product quality.

* Testability measures the effort main-
tainers and users expend to test the mod-
ified software.

* Supportability measures the ease with
which support can be provided for the
software, encompassing the availability
and accessibility of documentation, tools,
and assistance for addressing issues,
facilitating effective maintenance and
troubleshooting.

Other measures that software maintainers
use include the following:

* Reliability: The degree to which a system
or software performs specific functions
under specified conditions for a spec-
ified period, including the following

characteristics:

o Maturity: How well a system or soft-
ware can meet the need for reliability.

o Availability: Whether a system or soft-
ware is operational and accessible.

o Fault tolerance: How well a system or
software operates despite hardware or
software faults.

o Recoverability: How well a system or
software can recover data during an
interruption or failure.

* Size of the software (e.g., functional
size, LOC).

* Number of maintenance requests, by
time period.
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Software Maintenance Process
Operation Disposal
Prepare for Perform
Maintenance Maintenance
Perform Manage Results
Development Logistic > of Maintenance Transition
Support and Logistics

Figure 7.3. Software Maintenance Processes (ISO/IEC/IEEE 14764) [1]

Effort per maintenance request.
Software characteristics (e.g., platform,
hardware,  programming  language,
frameworks).

Maintenance measures may be collected,
analyzed and trended by category to facil-
itate improvement and to provide insight
into where maintenance costs are expended.
The degree of software maintenance effort
expended for different applications, listed
by category, is valuable business informa-
tion for users and their organizations. It
can also enable the organization to make an
internal comparison of software maintenance

profiles [7].
3. Software Maintenance Processes

In addition to standard software engineering
processes and activities described in ISO/
IEC/IEEE 14764 [1], a number of activities
are unique to maintainers (refer to section 3.2).

3.1. Software Maintenance Processes

[1,s5.2][2%, c5]

Maintenance processes provide needed activ-
ities and detailed inputs and outputs to those
activities, as described in ISO/IEC/IEEE
14764 [1]. Maintenance is one of the technical
life cycle processes presented in ISO/IEC/
IEEE 12207 [10]. Figure 7.3 shows how main-

tenance processes connect to other software

engineering processes, which interact to sup-
port operational software. The software main-
tenance processes includes the following:

Prepare for maintenance.

Perform maintenance.

Perform logistics support.

Manage results of maintenance and
logistics.

Recently, Agile methodologies, which pro-
mote lightweight processes, have also been
adapted to maintenance. This requirement
has emerged from the ever-increasing demand
for fast turnaround of maintenance services.
Improvement to the software maintenance
processes is supported by software mainte-
nance maturity models [3].

3.2. Software Maintenance Activities and Tusks
[1,56.1][2%, c6,c7]

The maintenance process contains the activi-
ties and tasks necessary to operate and modify
an existing software system while preserving
its integrity. These activities and tasks are the
responsibility of the operator and the main-
tainer. As already noted, many maintenance
activities are similar to those of software
development. Maintainers perform anal-
ysis, design, coding, testing and documenta-
tion. They must track requirements in their
activities — just as in development — and
update documentation as baselines change.
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ISO/IEC/IEEE 14764 recommends that
when a maintainer uses a development pro-
cess, the process must be tailored to meet spe-
cific needs.

However, there are a number of processes,
activities and practices that are specialized to
software maintenance:

* Program understanding: This comprises
the activities needed to obtain a general
knowledge of what a software product
does and how the parts work together.

» Transition: This is a controlled and coor-
dinated sequence of activities during
which software is transferred progres-
sively from the developer to the opera-
tions and maintenance team.

* MR acceptance/rejection: Modifications
requesting work greater than the agreed
size, level of effort, or level of complexity
may be rejected by maintainers and
rerouted to a developer.

* Maintenance help desk: The help desk
is an end-user and maintenance-coordi-
nated support function that triggers the
assessment, prioritization and costing of
MRs and incidents.

* Impact analysis: The impact analysis
identifies areas impacted by a poten-
tial change.

* Maintenance service-level indicators
(SLIs), service-level objectives (SLOs),
SLAs, and maintenance software and
hardware licenses and contracts: These
are contractual agreements that describe
the services and quality objectives of
third parties.

3.2.1.  Supporting and Monitoring Activities
[s6.4.13.3d5,56.1.8][2%, c353.4]

Maintainers may also perform ongoing sup-
port activities, such as documentation, SCM,
verification and validation (V&V), problem
resolution, software quality assurance (SQA),
reviews, vulnerability assessments, and audits.
Another important management of mainte-
nance results activity is that of monitoring
customer satisfaction.

3.2.2.  Planning Activities

[1,s6.1.3,58.7.2][2%, c10]

An important activity for software main-
tenance is planning, and this process must
address the issues associated with a number
of planning perspectives, including the
following:

* Business planning (organizational level)
* Maintenance planning (transition level).
* Release/version planning (software level).
* MR planning (at individual request level).

At the individual request level, planning is
carried out during the impact analysis. (See
section 2.1.3, Impact Analysis.) The release/
version planning activity requires that the
maintainer do the following:

* Collect the dates of availability of indi-
vidual requests.

» Agree with users on the content of sub-
sequent releases/versions.

* Identify potential conflicts and develop
alternatives.

* Assess the risk of a given release
and develop a back-out plan in case
problems arise

* Inform all stakeholders.

Whereas software development projects
have a typical duration of months to a few
years, the maintenance phase usually lasts until
the software is retired by the disposal process.
Estimating resources is a key element of main-
tenance planning. Software maintenance plan-
ning should begin with the decision to develop
a new software product and should consider
quality objectives. A concept document should
be developed, followed by a maintenance plan,
and these should address the following:

* Scope of software maintenance.

* Adaptation of the software maintenance
processes and tools.

+ Identification of the software mainte-
nance organization.

» Estimate of software maintenance costs.



A software maintenance plan should be
prepared during software development and
should specify how users will request mod-
ifications and report problems or issues.
Software maintenance planning is addressed
in ISO/IEC/IEEE 14764 [1]. Finally, at the
highestlevel of management, the maintenance
organization must conduct software mainte-
nance business planning activities (e.g., com-
munications, budgetary, financial and human
resources activities). [2%, ¢10]

3.2.3.  Configuration Management

[1,s6.1.3c,$6.4.13.3d4][2%, c11s11.3]

ISO/IEC/IEEE 14764 [1] describes SCM
as an enabling system or service to support
the maintenance process. SCM procedures
should provide for the verification, valida-
tion and audit of each step required to iden-
tify, authorize, implement and release the
software product and its IT assets under-
going change.

It is not sufficient to track MRs or PRs
only. Any change made to the software
product and its underlying infrastructure
must be controlled. This control is established
by implementing and enforcing an approved
SCM process. The SCM KA discusses SCM
in more detail as well as the process by which
change requests are submitted, evaluated and
approved. SCM for software maintenance
differs from SCM for software development
in the number of small changes that must be
controlled in the operational environment.
The SCM process is implemented by devel-
oping and following an SCM plan and oper-
ating procedures. Maintainers participate in
configuration control boards to determine
the content of the next release or version in
production.

3.2.4.  Software Quality
[1,$6.1.6,58.7.2][2% c13513.4]

It is not sufficient to simply hope that soft-
ware maintenance will produce higher quality
software. Maintainers should have an effec-
tive quality program. They must implement
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processes to support the continuous improve-
ment of software maintenance processes. The
activities and techniques for SQA, V&YV,
reviews, and audits must be selected in con-
cert with all the other processes to achieve
the desired level of quality. It is also recom-
mended that both software operations and
maintenance adapt and use the output of the
software development process, its techniques
and deliverables (e.g., test tools and documen-
tation), and test results. More details about
software quality can be found in the Software

Quality KA.
4. Software Maintenance Techniques

'This topic introduces generally accepted tech-
niques used in software maintenance.

4.1. Program Campre/_)ension
[2*, 6, c14514.5]

Maintainers spend considerable time reading
and understanding programs in order to
implement changes. Code browsers are key
tools for program comprehension and are used
to organize and present source code. Clear
and concise documentation also aids program
comprehension.

4.2, Software Reengineering
[2%,c7]

Software reengineering refers to the examina-
tion and alteration of software to reconstitute
it in a new form. It includes the subsequent
implementation of the new form. It is often
undertaken not to improve maintainability
but to replace aging legacy software.

Refactoring is a reengineering technique
that aims to reorganize a program without
changing its behavior. Refactoring seeks to
improve the internal structure and the main-
tainability of software. Refactoring tech-
niques can be used during maintenance
activities to reduce the technical debt of the
codebase before and after code changes.

In the context of Agile software develop-
ment, the incremental nature of continuous
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integration (CI) often requires the code to
be continuously refactored to augment its
quality and reliability. Hence, continuous
refactoring supports the volatile software
life cycle by providing better ways to reduce
and manage the growing complexity of soft-
ware systems while improving developer
productivity.

4.3. Reverse Engineering
[2* ¢7,c14s14.5]

Reverse engineering is the process of ana-
lyzing software to identify its components
and their interrelationships, as well as cre-
ating representations of the software in
another form or at higher levels of abstrac-
tion. Reverse engineering is passive; it does
not change the software or result in new
software. Reverse engineering efforts typ-
ically produce graphical representations
of different software artifacts, such as call
graphs and control flow graphs from source
code. Types of reverse engineering include
the following:

* Re-documentation.

* Design recovery.

* Data reverse engineering — recovering
logical schemata from physical databases.

Tools are key for reverse engineering and
related tasks such as re-documentation and
design recovery. Software visualization is
a common reverse engineering technique
that helps maintainers explore, analyze and
understand the structure of software systems
as well as their evolution. Software visual-
ization comprises visually encoding and ana-
lyzing software systems, including software
maintenance practices, evolution, structure
and software runtime behavior using infor-
mation visualization, computer graphics and
human-computer interaction.  Generally,
software visualization tools are accompanied
by various quality assurance features, such
as quality metrics calculation, technical debt
estimation, and bad design and coding prac-
tices (code smells) detection.

4.4. Continuous Integration, Delivery, Testing
and Deployment [1,56.4.13.3 Note 1]

Automating  development, operation and
maintenance-related tasks saves engineering
resources. When implemented appropriately,
such automated tasks are generally faster,
easier and more reliable than they would be if
performed manually. ISO/IEC/IEEE 14764
states that automation includes distribution
and installation of software.[1, s6.4.13.3 Note
1]. DevOps supports such automation while
building, packaging and deploying reliable and
secure systems. DevOps combines develop-
ment, operations, and maintenance resources
and procedures to perform CI, delivery, testing
and deployment. [9]

CI is a software engineering practice that
continually merges artifacts, including source
code updates from all members of a team, into
a shared mainline for evolving and testing the
developed system. With CI, the members of
a team can integrate their changes frequently,
and each integration can be verified by an
automated build (including testing) to detect
integration errors as quickly as possible. The
fundamental goal of CI is to automatically
catch problematic changes as early as pos-
sible. CI helps guarantee the working state of
a software system at various points from build
to release, thereby improving confidence and
quality in software products and improving
productivity in teams. Specifically, CI auto-
mates the build and release processes with
continuous build, continuous delivery, contin-
uous testing and continuous deployment. [6,
c23, c24].

Continuous delivery is a software engi-
neering practice that enables frequent releases
of new systems (including software) to staging
or various test environments through the use
of automated tools. Continuous delivery con-
tinuously assembles the latest code and config-
uration to create release candidates.

Continuous festing is a software testing prac-
tice that involves testing the software at every
stage of the software development life cycle.
The goal of continuous testing is to evaluate
the quality of software at every step of the



continuous delivery process by testing early
and often. Continuous testing involves var-
ious stakeholders such as developers, main-
tainers, DevOps, SQA, and operational
systems teams.

Continuous deployment is an automated pro-
cess of deploying changes to production by
verifying intended features and validations to
reduce risk. As Martin Fowler, in the book
Continuous Delivery, pointed out, “The biggest
risk to any software effort is that you end up
building something that isn’t useful. The ear-
lier and more frequently you get working soft-
ware in front of real users, the quicker you get
teedback to find out how valuable it really is.”

4.5. Visualizing Maintenance

Maintaining a clear understanding of soft-
ware systems’ evolving structures and depen-
dencies presents a challenge. Visualization is
a valuable supporter in software maintenance
management, offering a visual representation
of the software’s components and helping it
make informed decisions. With the increasing
size and complexity of software systems, visual
representations can support software mainte-
nance by enabling dependency analysis, tracing
a software evolution history, visualizing soft-
ware runtime dynamics, and providing com-
plementary  documentation.  Visualization
represents an active research area that syner-
gizes computational capabilities with human
pattern detection abilities. It produces visual
representations designed to enhance the main-
tenance team’s cognitive performance when
faced with complex data analysis.

5. Software Maintenance Tools
[1, c6s4][2%, c14]

This topic encompasses tools that are par-
ticularly important in software maintenance
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where existing software is being modified.
Maintenance tools are closely intercon-
nected with development and operations
tools. Together, they are part of the SEE.
The following are examples of mainte-
nance tools:

* Configuration management, code ver-
sioning and code review tools,

* Software testing tools,

* Software quality assessment tools (to
assess technical debt and code quality).

* Program slicers, which select only the
parts of a program affected by a change.

* Static analyzers, which allow gen-
eral viewing and summaries of pro-
gram content.

* Dynamic analyzers, which allow the
maintainer to trace the execution path of
a program.

* Data flow analyzers, which allow the
maintainer to track all possible data flows
of a program.

* Cross-referencers, which generate indexes
of program components.

* Dependency analyzers, which help main-
tainers analyze and understand the inter-
relationships among components of
a program.

* Remote Access tools, enabling main-
tainers to diagnose and modify user sys-
tems remotely, crucial for real-time issue
resolution and seamless modifications
across environments.

Reverse engineering tools support the pro-
cess by working backward from an existing
product to create artifacts such as specifica-
tion and design descriptions, which can then
be transformed to generate a new product
from an old one. Maintainers also use soft-
ware tests, SCM, software documentation
and software measurement tools.
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MATRIX OF TOPICS VS. REFERENCE MATERIAL

Grubb and Takang 2003 [27]

1. Software Maintenance Fundamentals

1.1. Definitions and Terminology

clsl.2, ¢2s2.2

1.2. Nature of Software Maintenance c1s1.3
1.3. Need for Software Maintenance clsl.5
1.4. Majority of Maintenance Costs c4s4.3, ¢5s5.2
1.5. Ewolution of Software c3s3.5

1.6. Categories of Software Maintenance

c1s1.8, ¢3s3.3

2. Key Issues in Software Maintenance

2.1. Technical Issues

2.1.1. Limited Understanding c6s6.9

2.1.2. Testing c9, c13s13.4.4
2.1.3. Impact Analysis c13s13.3
2.1.4. Maintainability c12512.5.5

2.2. Management Issues

2.2.1. Alignment with Organizational Objectives

c2s2.3.1.2, c3s3.4

2.2.2. Staffing

c2s2.3.1.5, c10s10.4

2.2.3. Process c5

2.2.4. Supplier Management

2.2.5. Organizational Aspects of Maintenance c10

2.3. Maintenance Costs

2.3.1. Technical Debt Cost Estimation c12s12.5
2.3.2. Maintenance Costs Estimation c12512.5.6
2.4. Software Maintenance Measurement cl2

3. Software Maintenance Process

3.1. Software Maintenance Processes c5

3.2. Software Maintenance Activities and Tasks c6, c7
3.2.1. Supporting and Monitoring Activities c3s3.4
3.2.2. Planning Activities c10

3.2.3. Software Configuration Management c11s11.3
3.2.4. Software Quality c13s13.4
4. Software Maintenance Techniques

4.1. Program Comprehension c6,c14s14.5
4.2. Software Reengineering c7
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4.3. Reverse Engineering c7, c14s14.5

4.4. Continuous Integration, Delivery, Testing and Deployment

4.5. Visualizing Maintenance

5. Software Maintenance Tools cl4
FURTHER READINGS REFERENCES

A. April and A. Abran, Software Maintenance

Management: Evaluation and Continuous
Improvement [3).

This book explores the domain of contin-
uous software maintenance processes. It
provides road maps for improving software
maintenance processes in organizations. It
describes software maintenance practices
organized by maturity levels, which allow
for benchmarking and continuous improve-
ment. Goals for each key practice area are
provided, and the process model presented
is fully aligned with the architecture and
framework of international standards ISO/
IEC/IEEE 12207, ISO/IEC/IEEE 14764
and ISO/IEC/IEEE 15504, as well as
models such as ITIL and CoBIT.

IEEE Std 2675-2021, IEEE Standard for
DevOps: Building Reliable and Secure Systems
Including App/imtion Build, Package and
Deployment [5].

Technical principles and processes to build,
package, and deploy systems and applica-
tions in a reliable and secure way are speci-
fied. Establishing effective compliance and
information technology (IT) controls is the
focus. DevOps principles presented include
mission first, customer focus, shift-left, con-
tinuous everything, and systems thinking.
How stakeholders, including developers and
operations staff, can collaborate and commu-
nicate effectively is described. The process
outcomes and activities herein are aligned
with the process model specified in ISO/
IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015.
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CHAPTER 08

Software Configuration

Management

ACRONYMS

CR Change Request

CCB Configuration Control Board

CI Configuration Item

CM Configuration Management

CMDB | Configuration
Management Database

CMMI | Software Engineering Institute’s
Capability Maturity Model
Integration

FCA Functional Configuration Audit

MBX | Model Based Experience

PCA Physical Configuration Audit

QA Quality Assurance

SBOM | Software Bill Of Materials

SCCB | Software Configuration
Control Board

SCR Software Change Request

SCI Software Configuration Item

SCM | Software Configuration Management

SCMP | Software Configuration
Management Plan

SCSA | Software Configuration Status
Accounting

SLCP | Software Life Cycle Process

SQA Software Quality Assurance

V&V | Verification And Validation

VDD | Version Description Document

INTRODUCTION

Software configuration management (SCM)
is formally defined as “the process of applying
configuration management [CM] throughout

the software life cycle to ensure the com-
pleteness and correctness of Cls [configura-
tion items],” with CM defined as “a discipline
applying technical and administrative direc-
tion and surveillance to identify and document
the functional and physical characteristics of
a configuration item, control changes to those
characteristics, record and report change pro-
cessing and implementation status, and verify
compliance with specified requirements” [1].
SCM is a software life cycle process (SLCP)
that supports project management, devel-
opment and maintenance activities, quality
assurance (QA) activities, and the customers
and users of the end product.

The concepts of CM apply to all items
controlled, although some differences exist
between implementing hardware CM and
implementing software CM. CM applies
equally to iterative and incremental software
development methodology.

SCM is closely related to software quality
assurance (SQA). As defined in the Software
Quality KA, SQA processes ensure that the
software products and processes in the project
life cycle conform to their specified require-
ments by requiring software engineers to
plan, enact and perform a set of activities that
demonstrate that those specifications are built
into the software. SCM activities support these
SQA goals through software configuration
activities (presented later in this chapter). The
configuration audit activity can be described
as a review of CIs and is closely related to the
reviews defined in the quality plan.

The SCM activities should operation-
alize SCM process management and plan-
ning, software configuration identification,
software configuration change control, soft-
ware configuration status accounting (SCSA),

8-1
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Figure 8.1. Breakdown of Topics for the Software Configuration Management KA.

software configuration auditing, and soft-
ware release management and delivery. This
operationalization:

1. Determines what is expected to be under
control during project development

2. Identifies and records who developed what

CI as well as when and where it is allocated

Allows controlled changes

4. Tracks CIs’ relationships to show
how changes that affect one CI might
affect other Cls

5. Keeps CI versions under control

6. Ensuresthat the quality of the Cls delivered
meets the requirements for intended use

©

The SCM KA is related to all other KAs
because SCM’s object is the artifact produced
and used throughout the software engi-
neering process.

BREAKDOWN OF TOPICS FOR
SOFTWARE CONFIGURATION
MANAGEMENT

Figure 8.1 shows the breakdown of topics for
the SCM KA.

1. Management of the SCM Process
[2, c6, c7]

SCM controls the evolution and integrity of
a product by identifying its elements (known
as Cls); managing and controlling change;
and verifying, recording and reporting on
configuration information. From the soft-
ware engineer’s perspective, SCM facilitates
development and change implementation
activities. Successful SCM implementation
requires careful planning and management,
which requires a strong understanding of
the organizational context for, and the con-
straints placed on, the design and imple-
mentation of the SCM process. The SCM
plan can be developed once for the organi-
zation and then adjusted as needed for indi-
vidual projects.

1.1 Organizational Context for SCM
[2, c6, ann. D] [3*, Introduction]
[4%*, c25]

To plan an SCM process for a project, it is
necessary to understand the organizational
context and the relationships among orga-
nizational elements. SCM interacts not just
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with the particular project but also with sev-
eral other areas of the organization.

The organizational elements responsible
for software engineering supporting pro-
cesses might be structured in various ways.
The overall responsibility for SCM often
rests with a distinct part of the organization
or with a designated individual. However,
responsibility for certain SCM tasks might
be assigned to other parts of the organization
(such as the development division).

Software is frequently developed as part
of a larger system containing hardware and
firmware elements. In this case, SCM activ-
ities take place in parallel with hardware and
firmware CM activities and must be con-
sistent with system-level CM. Note that
firmware contains hardware and software;
therefore, both hardware and software CM
concepts apply.

SCM might interface with an organiza-
tion’s QA activity on issues such as records
management and nonconforming items.
Regarding the former, project records subject
to provisions of the organization’s QA pro-
gram might also be under SCM control. The
QA team is usually responsible for managing
nonconforming items. However, SCM might
assist with tracking and reporting on software
configuration items (SCls) in this category.

Perhaps the closest relationship is with
the software development and maintenance
organizations. It is within this context that
many of the software configuration control
tasks are conducted. Frequently, the same
tools support development, maintenance, and
SCM purposes.

1.2 Constraints and Guidance for the
SCM Process
[2, c6, ann. D, ann. E] [3%,
c2,c5][5,c19s2.2]

Constraints affecting, and guidance for,
the SCM process come from many sources.
Policies and procedures set forth at corporate
or other organizational levels might influence
or prescribe the design and implementation of
the SCM process for a project. In addition,

the contract between the acquirer and the
supplier might contain provisions affecting
the SCM process (e.g., certain configura-
tion audits might be required, or the contract
might specify that certain items be placed
under CM). When the software to be devel-
oped could affect public safety, external regu-
latory bodies may impose constraints. Finally,
the SLCP chosen for a software project and
the level of formalism selected for imple-
mentation will also affect SLCP design and
implementation.

Software engineers can also find guid-
ance for designing and implementing an
SCM process in “best practice,” as reflected
in the software engineering standards issued
by the various standards organizations. (See
Appendix B for more information about these
standards.)

1.3 Planning for SCM
[2, ¢6, ann. D, ann. E] [3*, c23]
[4*, c25]

SCM process planning for a project should
be consistent with the organizational context,
applicable constraints, commonly accepted
guidance and the nature of the project (e.g.,
size, safety criticality and security). The major
activities covered in the plan are software con-
figuration identification, software configura-
tion control, SCSA, software configuration
auditing, and software release management
and delivery. In addition, issues such as orga-
nization and responsibilities, resources and
schedules, tool selection and implementa-
tion, vendor and subcontractor control, and
interface control are typically considered. The
planning activity’s results are recorded in an
SCM plan (SCMP), which is subject to SQA
review and audit.

Branching and merging strategies should
be carefully planned and communicated
because they affect many SCM activities.
SCM defines a branch as a set of evolving
source file versions [1]. Merging consists of
combining different changes to the same file
[1]. This typically occurs when more than
one person changes a CI. There are many
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branching and merging strategies in common
use. (See the Further Readings section for
additional discussion.)

'The software development life cycle model
chosen (see Software Life Cycle Models in
the Software Engineering Process KA) also
affects SCM activities, and SCM planning
should consider this. For instance, many soft-
ware development approaches use continuous
integration, which is characterized by fre-
quent build-test-deploy cycles. Clearly, SCM
activities must be planned accordingly.

1.3.1 SCM Organization and Responsibilities
[2, ann. Ds5-6] [3* c10-11] [4*, c25]

Organizational roles must be clearly identi-
fied to prevent confusion about who will per-
form specific SCM activities or tasks. These
responsibilities must also be assigned to orga-
nizational entities; this can be made clear by
the responsible individual’s title or by des-
ignating the organizational division or sec-
tion in addition to the individual responsible
within that section. The overall authority and
reporting channels for SCM should also be
identified, although this might be accom-
plished at the project management or the QA
planning stage.

1.3.2 SCM Resources and Schedules
[2, ann. Ds8] [3*, 23]

Planning for SCM identifies the resources
— including staff and tools — involved in
carrying out SCM activities and tasks. It
also identifies the necessary sequences of
SCM tasks and establishes each task’s place
in the project schedule and its position rela-
tive to milestones established at the project
management planning stage. Any training
requirements for implementing the plans and
training new staff members are also specified.

1.3.3 Tool Selection and Implementation
[3* c26s2, c2656]

As in any area of software engineering, the
selection and implementation of SCM tools

should be carefully planned. The following
questions should be considered:

* Organization: What motivates tool acqui-
sition from an organizational perspective?

* Tools: Can we use commercial tools, or
do we need to develop our own tools spe-
cifically for this project?

* Environment: What constraints are
imposed by the organization and its tech-
nical context?

* Legacy: How will projects use (or not
use) the new tools?

¢ Financing: Who will pay for the tools’
acquisition, maintenance, training and
customization?

* Scope: Howwill the new tools be deployed
— for instance, through the entire orga-
nization or only on specific projects?

¢ Ownership: Who is responsible for intro-
ducing new tools?

¢ Future: What is the plan for the tools’ use
in the future?

* Change: How adaptable are the tools?

* Branching and merging: Are the tools’
capabilities compatible with planned
branching and merging strategies?

* Integration: Do the various SCM tools
integrate among themselves? Do they
integrate with other tools in use in the
organization?

* Migration: Can the repository maintained
by the version control tool be ported to
another version control tool while main-
taining the complete history of the Cls
it contains?

SCM requires a set of tools instead of
a single tool. Such tool sets are sometimes
called workbenches. As part of the tool selec-
tion planning effort, the team must determine
whether the SCM workbench will be gpen
(tools from different suppliers will be used in
different SCM process activities) or integrated
(elements of the workbench are designed to
work together).

Organization size and the type of projects
involved may also affect tool selection. (See
SCM Tools, section 7 of this document)



SOFTWARE CONFIGURATION MANAGEMENT  8-5

1.3.4 Vendor/Subcontractor Control
[2, c13] [3* c1359-c14s2]

A software project might acquire or use pur-
chased software products, such as compilers or
other tools. SCM planning considers whether
and how these items will be managed with
configuration control (e.g., integrated into the
project libraries) and how changes or updates
will be evaluated and managed.

Similar considerations apply to subcon-
tracted software. When a project uses subcon-
tracted software, both the SCM requirements
to be imposed on the subcontractor’s SCM
process and the means for monitoring compli-
ance need to be established. The latter includes
determining what SCM information must be
available for effective compliance monitoring.

1.3.5 Interface Control
[2, c12] [3%, c23s4]

When a software item interfaces with another
software or with a hardware item, a change
to either item can affect the other. Planning
for the SCM process considers how the inter-
facing items will be identified and how changes
to the items will be managed and communi-
cated. The SCM role may be part of a larger,
system-level process for interface specification
and control involving interface specifications,
interface control plans and interface control
documents. In this case, SCM planning for
interface control takes place within the con-
text of the system-level process.

1.4 SCM Plan
[2, ann. D] [3*, ¢23]

The results of SCM planning for a given
project are recorded in an SCMP, a “living
document” that serves as a reference for the
SCM process. The SCMP is maintained
(updated and approved) as necessary during
the software life cycle. For teams to implement
an SCMP, they’ll typically need to develop a
number of more detailed, subordinate pro-
cedures to define how specific requirements
will be met during day-to-day activities (e.g.,

which branching strategies will be used, how
frequently builds will occur, how often auto-
mated tests of all kinds will be run).
Guidance on creating and maintaining an
SCMP, based on the information produced
by the planning activity, is available from a
number of sources, such as [2]. This reference
provides requirements for information to be
contained in an SCMP. An SCMP should

include the following sections:

* Introduction (purpose, scope, terms used)

* SCM Management (organization, respon-
sibilities, authorities, applicable policies,
directives, procedures)

* SCM Activities (configuration identifi-
cation, configuration control, etc.)

* SCM Schedules (coordination with other
project activities)

* SCM Resources (tools, physical resources
and human resources)

« SCMP Maintenance

1.5 Monitoring of Software Configuration
Management
[3*, cl1s3]

After the SCM process has been imple-
mented, some surveillance may be necessary
to ensure that the SCMP provisions are prop-
erly carried out. The plan is likely to include
specific SQA requirements to ensure com-
pliance with specified SCM processes and
procedures. The person responsible for SCM
ensures that those with the assigned respon-
sibility perform the defined SCM tasks cor-
rectly. As part of a compliance auditing
activity, the SQA authority might also per-
form this surveillance.

Using integrated SCM tools with pro-
cess control capability can make the surveil-
lance task easier. Some tools facilitate process
compliance while providing flexibility for
the software engineer to adapt procedures.
Other tools enforce a specific process, leaving
the software engineer with less flexibility.
Surveillance requirements and the level of
flexibility provided to the software engineer
are important considerations in tool selection.
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1.5.1 SCM Measures and Measurement
[3* ¢9s2, c2552-53]

SCM measures can be designed to provide
specific information on the evolving product,
but they can also provide insight into how
well the SCM process functions and iden-
tify opportunities for process improvement.
SCM process measurements enable teams to
monitor the effectiveness of SCM activities
on an ongoing basis. These measurements
are useful in characterizing the current
state of the process and providing a basis for
comparison over time. Measurement anal-
ysis may produce insights that lead to pro-
cess changes and corresponding updates
to the SCMP.

Software libraries and the various SCM
tool capabilities enable teams to extract useful
information about SCM process characteris-
tics (as well as project and management infor-
mation). For example, information about the
time required to accomplish various types of
changes would be useful in evaluating criteria
for determining what levels of authority are
optimal for authorizing certain changes and
in estimating the resources needed to make
future changes.

Care must be taken to keep the surveillance
focused on the insights that can be gained from
the measurements, not on the measurements
themselves. Software process and product
measurement is further discussed in the
Software Engineering Process KA. Software
measurement programs are described in the
Software Engineering Management KA.

1.5.2 In-Process Audits of SCM
[3* c1s1]

Audits can be carried out during the software
engineering process to investigate the status
of specific configuration elements or to assess
the SCM process implementation. In-process
SCM auditing provides a more formal mech-
anism for monitoring selected aspects of the
process and may be coordinated with the
SQA function. (See Software Configuration
Auditing.)

2. Software Configuration Identification
[2, c8]

Software configuration identification identi-
fies items to be controlled, establishes iden-
tification schemes for the items and their
versions, and establishes the tools and tech-
niques to be used in acquiring and managing
controlled items. These activities provide the
basis for other SCM activities.

2.1 Identifying Items to Be Controlled
[2, ¢8s2.2]

A first step in controlling change is identi-
fying the software items to be controlled. This
involves understanding the software configu-
ration within the context of the system con-
figuration, selecting SCIs and developing a
strategy for labeling software items.
2.1.1.  Software Configuration
Software configuration is the functional and
physical characteristics of hardware or soft-
ware as set forth in technical documentation
or achieved in a product. It can be viewed as
part of an overall system configuration.
2.1.2  Software Configuration Item

[2, ¢8s2.1] [3*, c9]

A CI is an item or aggregation of hardware,
software or both, designed to be managed as
a single entity. An SCI is a software entity
that has been established as a CI [1]. The
SCM controls various items in addition to
the code itself. Software items with potential
to become SCIs include plans, specifications
and design documentation, testing materials,
software tools, source and executable code,
code libraries, data and data dictionaries, and
documentation for installation, maintenance,
operations and software use.

Selecting SCIs is an important process in
which a balance must be achieved between
providing adequate visibility for project con-
trol purposes and providing a manageable
number of controlled items.
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2.2 Configuration Item Identifiers and
Attributes
[2, ¢8s2.3, ¢8s2.4] [3%*, ¢9]

Status accounting activity (explained later)
gathers information about Cls while they
are developed. The Cls’ scheme is defined
in order to establish what information must
be gathered and tracked for each CI. Unique
identifiers and versions are tracked.

An example scheme may include the
following:

CI name

CI unique identifier

CI description
CI date(s)
CI type

CI owner

The CI's unique Identifier can use sig-
nificant or nonsignificant codification. An
example of significant codification could be
XX-YY, where XX is the iteration abbrevia-
tion (in case of using an iterative development
method) and YY is the CI abbreviation.

2.3 Baseline Identification
[2, c8s2.5.4, ¢8s2.5.5, ¢8s2.5.6]

A software baseline is a formally approved
version of a CI (regardless of media type) that
is formally designated and fixed at a specific
time during the CI’s life cycle. The term also
refers to a particular version of an agreed-
upon SCI. The baseline can be changed only
through formal change control procedures.
A baseline, with all approved changes to the
baseline, represents the current approved con-

figuration. A baseline consists of one or more
related Cls.

2.4 Baseline Attributes
[2, c8s2.5.4]

Baseline attributes are used in the status
accounting activity and specify information
about the baseline established.

Example baseline attributes may include
the following:

Baseline name

Baseline unique identifier

Baseline description

Baseline date of creation
Baseline CIs

2.5 Relationships Scheme Definition
[3%, c7s4]

Relationships  provide the connections
required to create and sustain structure. The
ability to communicate intent and manage the
results are significantly enhanced when effec-
tive relationships (structuring) are in place
(e.g., model-based experience (MBX) plat-
forms). Relationship information exchange
and interoperability are needed to support
the applicable relationship types. The status
accounting activity is responsible for gathering
information about relationships among Cls.

Common types of relationships can be
described according to the following schemes:

Dependencies: CI-1 and CI-2 depend mutu-
ally on each other.

Example: CI-1 depends on C1-2, and vice
versa, for instance a class model depends on a
sequence diagram, because any change on any
of both types of models, affect the other.

| CI-1 Code CI-2 Code Date

Derivation: One CI derives from another,
typically in a sequential relationship, not
because of a lack of resources to handle both
CIs but because of a constraint that requires
that, for instance, CI-1 is completed before
CI-2 is developed.

Example: CI-1 derives from CI-2.

| CI-1 Code CI-2 Code Date

Succession: Software items evolve as a soft-
ware project proceeds. A software item ver-
sion is an identified instance of an item. It
can be thought of as a state of an evolving
item. This is what the succession relationship
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succession

| ; dependency
CL-1 4—
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CI-2 ]

succession |

succession

cllﬁj

derivation

Successions Records: According to the scheme defined for succession relationships, the next table gives the date when each CI was
created (three first rows), and the fourth row indicates a change made on the CI-1 on 10/05/2021, where the current version was 1
and created new version is 2.

CI-1 -

10/01/2021

CI-2 -

10/04/2021

CI-3 —

10/03/2021

CI-1 1

N ===

10/05/2021

Dependency Record: According to the scheme defined for dependencies CI-1 and CI-2 have a
dependency relationship created the day CI-2 was developed.

[cr1 | cr2 [ 10/04/2021

Derivation Record: According to the scheme defined for derivation, CI-3 derives from CI-1 and
this relationship came up the day CI-3 was created.

[cr3 | cr-1 [ 10/03/2021 |

Figure 8.2. Example of reported relationships

reflects, and it is reflexive in that each CI has
this relationship with itself. The first succes-
sion comes up the first time a CI is created.
Each time it is changed, a new succession
comes up, and tracking these successions is
the way to track CI versions.

Example: CI versions along a timeline.

| CI Code | Current Version | Next Version | Date |

Variants are program versions resulting
from engineered alternative options. This
type of relationship is not as common as the
type of relationships described above because
it is more expensive to maintain.

'The decision on what relationships to track
throughout the project is important because
tracking some relationships can require extra
work. On the other hand, tracking such rela-
tionships can facilitate decisions on change
requests (CRs) for a CIL.

Relationships between Cls can be tracked
in a Software Bill of Materials (SBOM).
An SBOM is a formal record containing
the details and supply chain relationships
of the Cls used in building software. Cls
in an SBOM are frequently referred to as

components. Components can be source code,
libraries, modules and other artifacts; they
can be open source or proprietary, free or
paid; and the data can be widely available or
access-restricted.

A simple example of the relationships
among three Cls in an SBOM, called CI-1,
CI-2 and CI-3, is illustrated in Figure 8.2.

2.6 Software Libraries
[2, c8s2.5] [3*, c1s3]

A software library is a controlled collection of
source code, scripts, object code, documen-
tation and related artifacts. Requirements
and test cases are stored in a repository and
should be linked with the code baselines
developed. Source code is stored in a version
control system, which provides traceability
and security for the baselines developed.
Multiple development streams are supported
in version control systems linked to the binary
objects (e.g., object code) derived during the
build process. These binary objects are typi-
cally stored in a repository that should con-
tain cryptographic hashes used to perform the
physical configuration audit (PCA).
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Figure 8.3. Flow of a Change Control Process

The definitive media library contains the
release baseline(s) of the artifacts that can
be deployed to the test, stage and produc-
tion systems.

The release management process depends
on these software libraries to manage the arti-
facts deployed. In terms of access control and
the backup facilities, security is a key aspect of
library management.

3. Software Configuration Change Control
[2, ¢9] [3*,c8] [4", c2553] 5, c11.53.3]

Software configuration change control is con-
cerned with changes required to Cls during
the software life cycle. It covers the pro-
cess for determining what changes to make,
the authority for approving certain changes,
support for implementing those changes,
and the concept of formal deviations from
project requirements as well as waivers of
them. Information derived from these activ-
ities is useful in measuring change traffic and
breakage, as well as aspects of rework.

Given that change to Cls can follow spe-
cific rules depending on the industrial sector,
area, company, etc., it is very important to
identify those rules in the context of the
software project for which the SCM pro-
cess is being developed and to adhere strictly

to those rules. The rest of this section can
be useful when no specific rules regarding
change control exist in the company or the
industrial sector where the software project
under development is allocated.

3.1 Requesting, Evaluating, and Approving
Software Changes
[2, ¢9s2.4] [3* c11s1] [4%, c2553]

The first step in managing changes to con-
trolled items is determining what changes to
make. The software change request (SCR)
process (Figure 8.3) provides formal pro-
cedures for submitting and recording CRs;
evaluating the potential cost and impact of a
proposed change; and accepting, modifying,
deferring or rejecting the proposed change.
A CR is a request to expand or reduce the
project scope; modify policies, processes,
plans or procedures; modify costs or budgets;
modify implemented code; or revise schedules
[1]. Requests for changes to SCIs may be orig-
inated by anyone at any point in the software
life cycle and may include a suggested solution
and requested priority. One source of a CR is
the initiation of corrective action in response
to problem reports. Regardless of the source,
the type of change (e.g., defect or enhance-
ment) is usually recorded on the SCR.
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Recording of the SCR enables the software
engineers to track defects and collect change
activity measurements by change type. Once
an SCR is received, a technical evaluation
(also known as an impact analysis) is per-
formed to determine the extent of the modifi-
cations necessary should the CR be accepted.
A good understanding of the relationships
among software (and, possibly, hardware)
items is important for this task. The infor-
mation recorded about the CIs relationships
could be useful for making decisions aftecting
any CI, given the potential impact on other
ClIs. Finally, an established authority — com-
mensurate with the affected baseline, the SCI
involved and the nature of the change — will
evaluate the CR’s technical and managerial
aspects and accept, moditfy, reject or defer the
proposed change.

3.1.1  Software Configuration Control Board
[2, ¢9s2.2] [3* c11s1] [4*, c2553]

The authority for accepting or rejecting pro-
posed changes rests with an entity known as a
configuration control board (CCB). In smaller
projects, this authority may reside with the
leader or an assigned individual rather than
a multi-person board. There can be multiple
levels of change authority depending on a
variety of criteria — such as the criticality of
the item involved, the nature of the change
(e.g., impact on budget and schedule), or
where the project is in the life cycle. The com-
position of the CCBs used for a system varies
depending on these criteria (but an SCM rep-
resentative is always present). All stakeholders
appropriate to the CCB level are represented.
When a CCB’s scope of authority is limited
to software, the board is known as a Software
Configuration Control Board (SCCB).
The CCB’s activities are subject to software
quality audits or reviews.

3.1.2  Software Change Request Process
[3* c1s4, c8s4] [4*, c2553]

An effective SCR process requires the use
of supporting tools and procedures for

originating CRs, enforcing the change process
flow, capturing CCB decisions and reporting
change process information. Linking this tool
capability with the problem-reporting system
can facilitate the problem resolution tracking
and how quickly solutions are developed.

3.1.3  Software Change Request Forms
Definition
[2, ¢9s2.3, ¢9s2.5]
[3* c8s4] [4*, c2553]

A CR application must include the following:

* A CR form, which must describe the
request and give the rationale for it

* A change certification form (necessary if
the CR is granted)

These forms can be managed through the
corresponding supporting tool, but humans
are responsible for designing the forms.

3.2 Implementing Software Changes
[4*, c2553]

Approved SCRs are implemented using the
defined software procedures per the applicable
schedule requirements. Because a number of
approved SCRs might be implemented simul-
taneously, a means for tracking which SCRs
are incorporated into particular software ver-
sions and baselines must be provided. At the
end of the change process, completed changes
may undergo configuration audits and soft-
ware quality verification, which includes
ensuring that only approved changes have
been made. The SCR process typically docu-
ments the change’s SCM and other approval
information.

Changes may be supported by source code
version control tools. These tools allow a team
of software engineers, or a single software
engineer, to track and document changes to
the source code. These tools provide a single
repository for storing the source code, so they
can prevent more than one software engineer
from editing the same module at the same
time, and they record all changes made to the
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source code. Software engineers check mod-
ules out of the repository, make changes, doc-
ument the changes, and then save the edited
modules in the repository. If needed, changes
can also be discarded, restoring a previous
baseline. More powerful tools can support
parallel development and geographically dis-
tributed environments. These tools may mani-
fest as separate, specialized applications under
an independent SCM group’s control. They
may also appear as an integrated part of the
software engineering environment. Finally,
they may be as elementary as a rudimentary
change control system that is provided with
an operating system.

3.3 Deviations and Waivers
[1,c3]

The constraints imposed on a software engi-
neering effort or the specifications produced
during the development activities might con-
tain provisions that those working on the
project find cannot be satisfied at the desig-
nated point in the life cycle. A deviation is
a written authorization granted before the
manufacture of an item to depart from a par-
ticular performance or design requirement for
a specific number of units or a specific period
of time. A waiver is a written authorization
to allow a CI or other designated item in
response to an issue found during production
or after the project is submitted for inspection
to depart from specified requirements when
the CI or project is nevertheless considered
suitable for use, either as it is or after rework
via an approved method. In these cases, a
formal process is used to gain approval for
deviations from or waivers of the provisions.

4. Software Configuration Status
Accounting

[2, ¢10] [3% ¢9] [5, c11s3.4]

SCSA is an activity of CM consisting of
recording and reporting information needed to
manage a configuration effectively regarding
ClIs, baselines and relationships among Cls.
This activity must be done by following the

logical schemes defined in the activity config-
uration identification for Cls, baselines and
relationships for gathering information.

4.1 Software Configuration Status Information
[2, c10s2.1]

The SCSA activity designs and operates a
system for capturing, verifying, validating
and reporting necessary information as the
life cycle proceeds. As in any information
system, the configuration status information
to be managed for the evolving configurations
must be identified, collected and maintained.
In addition, the information itself should be
secured where relevant. SCSA information
and measurements are needed to support the
SCM process and to meet the configuration
status reporting needs of management, soft-
ware engineering, security, performance and
other related activities.

The types of information available include
but are not limited to the following:

* Ongoing and approved configuration
identification

* Currentimplementation status of changes

* Impacted Cls and related systems

* Deviations and waivers

e Verification and validation
activities

(V&V)

Automated tools support SCSA as tasks
are performed, and reporting is available in a
user-friendly format.

4.2 Software Configuration Status Reporting
[2, c10s2.4] [3*, c1s5, ¢9s1]

Reported information can be used by var-
ious organizational and project elements —
including the development team, operations,
security, the maintenance team, project man-
agement, software quality activities teams
and others. Reporting can take many forms:
automated reports, ad hoc queries to answer
specific questions, and regular production of
predesigned reports, including those devel-
oped to meet security, legal or regulatory
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requirements. In other words, information
produced by the SCSA activity throughout
the life cycle can be used to satisfy QA and
security and to provide evidence of compli-
ance with regulations, governance require-
ments, etc.

In addition to reporting the configura-
tion’s current status, the information obtained
by the SCSA can serve as a basis for various
measurements.

Modern SCM includes a wider scope of
information, including but not limited to the
following:

* Indicators of integrity (e.g., MAC
(Message Authentication Code) SHA1
(Secure  Hash  Algorithm), MDS5
(Message Digest))

* Indicators of security status (e.g., gover-
nance risk and compliance)

* Evidence of V&V activities (e.g., require-
ments completion)

* Baseline status

* 'The number of CRs per SCI

* The average time needed to
implement a CR

5. Software Configuration Auditing
[2, c11] [5, c11s3.5]

A software audit is an independent examina-
tion of a work product or set of work prod-
ucts to assess technical, security, legal and
regulatory compliance with specifications,
standards, contractual agreements or other
criteria [1]. Audits are conducted according
to a well-defined process comprising various
auditor roles and responsibilities. Because
of this complexity, each audit must be care-
fully planned. An audit can require a number
of individuals to perform various tasks over a
fairly short time. Tools to support the plan-
ning and conduct of an audit can greatly facil-
itate the process.

Software configuration auditing deter-
mines the extent to which an item satis-
fies requirements for functional and physical
characteristics. Informal audits can be con-
ducted at key points in the life cycle. Two

types of formal audits might be required by
the governing contract (e.g., a contract cov-
ering critical software): the functional config-
uration audit (FCA) and the PCA. Successful
completion of these audits can be a prerequi-
site for establishing the product baseline.

5.1 Software Functional Configuration Audit
[2, c11s2.1]

The software FCA ensures that the audited
software item is consistent with its governing
specifications. The software V&V activities’
output (see Verification and Validation in
the Software Quality KA) is a key input to
this audit.

5.2 Software Physical Configuration Audit
[2, c11s2.2]

The software PCA ensures that the design
and reference documentation are consistent
with the as-built software product.

5.3 In-Process Audits of a Software Baseline
[2, c11s2.3]

Audits can be carried out during the develop-
ment process to investigate the status of specific
configuration elements. In-process audits can
be applied to all baseline items to ensure that
performance is consistent with specifications
or that evolving documentation continues to be
consistent with the developing baseline item.

This task applies to every single CI to be
approved as part of a baseline. The audit
consists of reviewing the CI to determine
whether it satisfies requirements. How to con-
duct the review and the expected result must
be described in the quality plan or if there is
no quality plan, defined for the software con-
figuration auditing activity.

Continuous reviews of Cls identified in
the configuration identification activities help
verify conformance to governance and regula-
tory requirements.

Configuration auditing reviews take place
throughout project development, whenever a
CI must be reviewed.
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6. Software Release Management and
Delivery
[2, c14] [3*, c85s2] [4*, c2554]

In this context, release refers to distrib-
uting software and related artifacts outside
the development activity, including internal
releases and distribution to customers. When
different versions of a software item are avail-
able for delivery (such as versions for different
platforms or versions with varying capabili-
ties), re-creating specific versions and pack-
aging the correct materials for version delivery
are frequently necessary. The software library
is a key element in accomplishing release and
delivery tasks.

6.1 Software Building [4* c2552]
Software building constructs the correct ver-
sions of SClIs, using the appropriate config-
uration data, into a software package for
delivery to a customer or other recipient such
as a team performing testing. For systems
with hardware or firmware, the executable
program is delivered to the system-building
activity. Build instructions help ensure that
the proper build steps are taken in the cor-
rect sequence. In addition to building soft-
ware for new releases, SCM must usually
be able to reproduce previous releases for
recovery, testing, maintenance or additional
release purposes.

Software is built using supporting tools,
such as compilers. For example, if it is nec-
essary to rebuild an exact copy of a previously
built SCI, supporting tools and associated
build instructions must be under SCM con-
trol to ensure the availability of the correct
versions of the tools.

Tool capability is useful for selecting the
correct versions of software items for a target
environment and automating the process
of building the software from the selected
version and configuration data. This tool
capability is necessary for projects with
parallel or distributed development envi-
ronments. Most software engineering envi-
ronments provide this capability. However,

these tools vary in complexity; some require
the software engineer to learn a special-
ized scripting language, while others use a
more graphics-oriented approach that hides
much of the complexity of an “intelligent”
build facility.

The build process and products are often
subject to software quality verification.
Outputs of the build process might be needed
for future reference. They may become records
of quality, security, or compliance with orga-
nizational or regulatory requirements. The
SBOM listing the artifacts included in the
build is an important CM output.

In continuous integration, software
building is performed automatically when
changes to Cls are committed to a source
control repository. Tools running on a local
or cloud-based server monitor the project’s
source control system and initiate a pipeline of
steps to be undertaken every time a change is
committed to a particular branch or area of the
source code repository. The tool is configured
to retrieve a fresh copy of the complete source
code for the project and execute the necessary
commands to compile and link the code. This
configuration is often combined with steps to
validate coding standards via automated static
analysis, execute unit tests and determine
code coverage metrics, or extract documenta-
tion from the source code. The resulting arti-
facts are then deployed through the Release
Management process.

6.2 Software Release Management
[4* c2552]

Software release management encompasses
the identification, packaging and delivery of
the elements of a product (e.g., an execut-
able program, documentation, release notes,
or configuration data). Given that product
changes can occur continually, one concern
for release management is determining when
to issue a release. The severity of the prob-
lems addressed by the release and measure-
ments of the fault densities of prior releases
affect this decision. The packaging task iden-
tifies which product items are to be delivered
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and then selects the correct variants of those
items, given the product’s intended applica-
tion. The information documenting the phys-
ical contents of a release is known as a version
description document (VDD). The release
notes describe new capabilities, known prob-
lems and platform requirements necessary for
proper product operation. The package to be
released also contains installation or upgrade
instructions. The latter can be complicated
because some users might have versions that
are several releases old. In some cases, release
management might be necessary to track the
product’s distribution to various customers
or target systems (e.g., when the supplier
was required to notify a customer of newly
reported problems). Finally, a mechanism to
help ensure the released item’s integrity can
be implemented (e.g., by including a digital
signature).

A tool capability is needed for supporting
these release management functions. For
example, a connection with the tool capa-
bility supporting the CR process is useful to
map release contents to the SCRs that have
been received. This tool capability might also
maintain information on various target plat-
forms and customer environments.

In continuous delivery, a pipeline is estab-
lished to build software continuously, as
described in the previous section. The resulting
artifacts from the build process include exe-
cutable code and libraries, which can then be
combined into an installation package and
deployed into an environment for verification
or production use.

7. Software Configuration Management
Tools
[3* c26s1]

Many tools can assist with CM at many levels.
The scope of these tools varies depending on
who uses the tools. CM is most effective when
integrated with other processes and by exten-
sion with other existing tools. The selection of
CM tool can be made depending on the scope
that the tool is going to have.
Overview of tools:

* ‘The configuration management system
(CMS) provides enabling technology and
logic to facilitate CM activities.

» Version control stores the source code,
configuration files and related artifacts.

* Build automation (pipeline) is established
to enable continuous delivery.

* A repository stores binaries that are cre-
ated during the build process to extract
the latest build artifacts and redeploy
them as required — used in the release
verification process.

* Configuration management database
(CMDB) or similar persistence store.

+ Change control tools.

* Release/deployment tools.

The CMS supports the unique identifica-
tion of artifacts. Both individual artifacts and
collections are specified in CM systems and
related repositories. Structuring creates a log-
ical relationship between artifacts. Validation
and release establish the artifacts’ integ-
rity, as part of the release management pro-
cess. Baselines are identified where stability is
intended. For example, interface management
is identified and controlled, making it part of
the baseline process. Change management,
including variants and nonconformances,
is reviewed and approved, and its imple-
mentation is planned. Verification and audit
activities are performed as part of the identi-
fication, change and release management pro-
cess. Status and performance accounting are
recorded as events occur and are made avail-
able through the CMS.

Individual support tools are typically suffi-
cient for small organizations or development
groups that do not issue variants of their soft-
ware products or face other complex SCM
requirements. The following are examples of
these tools:

» Version control tools: These tools track,
document and store individual CIs such as
source code and external documentation.

* Build handling tools: In their simplest
form, such tools compile and link an exe-
cutable version of the software. More
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advanced building tools extract the latest
version from the version control soft-
ware, perform quality checks, run regres-
sion tests, and produce various forms of
reports, among other tasks.

* Change control tools: These tools pri-
marily support the control of CRs and
event notifications (e.g., CR status
changes, milestones reached).

Project-related support tools mainly sup-
port workspace management for develop-
ment teams and integrators. In addition,
they can support distributed development

environments. Such tools are appropriate for
medium-to-large organizations that use vari-
ants of their software products and parallel
development and do not have certification
requirements.

Companywide-process  support fools can
automate portions of a companywide pro-
cess, providing support for workflow man-
agement, roles and responsibilities. They can
handle many items, large volumes of data, and
numerous life cycles. In addition, such tools
add to project-related support by supporting a
more formal development process, including
certification requirements.
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FURTHER READINGS

S.P. Berczuk and B. Appleton, Software
Configuration Management Patterns: Effective
Teamwork, Practical Integration [6].

This book expresses useful SCM practices
and strategies as patterns. The patterns can be
implemented using various tools, but they are
expressed in a tool-agnostic fashion.

CMMI for Development, Version 2.0 - 2.1, pp.
66—80 [7].

'This model presents a collection of best prac-
tices to help software development organi-
zations improve their processes. At maturity
level 2, it suggests CM activities.

B. Aiello and L. A. Sachs, Configuration man-
agement best practices: Practical methods that
work in the real world (1st edition), 2011 [8].
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control (Chapter 4, Section 3).
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CHAPTER 09

Software Engineering

Management

ACRONYMS
MBSE Model-Based System Engineering
PMBOK?® | Guide to the Project Management
Guide Body of Knowledge
PSM Practical Software and Systems
Measurement
SDLC Software development life cycle
SEM Software engineering
management
SQA Software quality assurance
SWX Software Extension fo the
PMBOK® Guide
WBS Work breakdown structure
INTRODUCTION

Software engineering management (SEM)
can be defined as a collection of work activi-
ties involved with planning, estimating, mea-
suring, controlling, coordinating, leading and
managing risk factors for a software project to
help ensure that software products and soft-
ware engineering services are delivered efhi-
ciently, effectively and to the stakeholders’
benefit [3]. Although project management
and measurement management are often
seen as separate areas, and each possesses
many unique attributes, the close relationship
between the two has led to their combined
treatment in this knowledge area (KA).

In one sense, it should be possible to
manage a software engineering project in the
same way other complex endeavors are man-
aged, using models, technical processes and
problem-solving styles as other engineering
projects do. However, software engineers use

different process models, technical processes,
and problem-solving styles than other engi-
neers, making these choices based on their
education and experience and on the differ-
ences between physical and software attri-
butes. Software system elements are logical
constructions expressed in algorithmic form,
while physical system elements are realized
in mechanical, electrical, chemical, biological
and other physical media. Software is intan-
gible because it has no physical properties and
is malleable because of the relative ease with
which code can be modified. Obtaining the
desired effect by modifying software code
might not be easy, but code modifications,
per se, are straightforward compared with the
modification of physical elements that have
already been constructed [12].

As software and software-embedded sys-
tems become bigger, more complex, and more
intertwined, software engineering manage-
ment and engineering roles are evolving in
response [10], because skilled individuals
must actively develop and maintain these sys-
tems. Consider the following: hardware is
different from software (and not all software
is the same). Hardware can be developed,
procured, and maintained in a linear fashion.
Software is an enduring capability that must
be supported and continuously improved
throughout its life cycle [13]. Furthermore,
the malleable nature of software allows iter-
ation among and interleaving of the develop-
ment phases (to a much greater degree than is
possible when developing physical artifacts).

Software is made by people and for people,
so digital talent matters. Software projects
are increasingly important, and their ongoing
success largely depends on people with the
right skills, knowledge and abilities. This fact

9-1



9-2 SWEBOK® GUIDE V4.0a

is essentially actual and necessary but not suf-
ficient. Other human factors may affect the
project’s success. During the software devel-
opment lifecycle, it is impossible to separate
the human factors from the technical ones.
Therefore, people management activities,
such as team and teamwork, leadership, com-
munication, and coordination activities, are
important to project success.

Software reuse can be a key factor in main-
taining and improving productivity and
competitiveness.

Factors such as cultural differences and
diverse attitudes may affect the develop-
ment team. A significant number of software
projects failed due to social issues. A “high
quality” developer can produce inappro-
priate or poor quality products that require
rework if presented with poor requirements or
communication.

Other issues can complicate effective man-
agement of software projects and software life
cycle processes, including the following:

* Clients often do not know what is needed
or what is feasible.

* Increased understanding and changing
conditions will likely generate new or
changed software requirements.

* Clients often do not appreciate the com-
plexities inherent in software engi-
neering, particularly regarding the
impact of changing requirements.

* As aresult of changing requirements and
software malleability, software is often
built iteratively rather than as a linear
sequence of phases.

* Software is nominally an enduring capa-
bility that must be supported and contin-
uously improved throughout its lifecycle.

* Software construction differs from hard-
ware implementation in that design is
usually part of software construction,
whereas in hardware-oriented systems,
design precedes hardware implementa-
tion to “get it right” prior to procurement
or fabrication of hardware [12].

* Software engineering necessarily incorpo-
rates creativity and discipline. Maintaining

an appropriate balance between the two is
sometimes difficult [5].

¢ The development of software capabilities
often involves a high degree of novelty
and complexity.

* Typically, the underlying technology has
a high rate of change.

* Computer software has become a key
component of most modern systems.
Software has been elevated to a highly
prominent role because of its flexibility
and relatively low replication cost com-
pared with hardware.

* A significant number of software projects
failed due to human issues. Physical mea-
surement units such as the length and
weight measures are challenging to apply
to the software. This difficulty impacts
how to plan, monitor, and control soft-
ware development projects.

* Software rework to remove faults and
respond to change.

* Speed and cycle time are important met-
rics for managing software. Software
capabilities are often delivered at
increasing speed to satisfy business and
mission needs [13].

SEM activities occur on three levels: orga-
nizational and infrastructure management,
project management, and management of the
measurement program. The last two are cov-
ered in detail in this KA description. This fact
does not diminish the importance of organiza-
tional and infrastructure management issues
but rather points out that software organiza-
tional engineering managers should be con-
versant with the project management and
software measurement knowledge described
in this KA. They should also possess some
target domain knowledge. Likewise, it also
helps for managers of complex projects and
programs where software is part of the system
architecture to know what issues software
engineering processes (versus other types of
engineering processes) introduce into project
management and project measurement.

Other aspects of organizational man-
agement affect software engineering — for
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example, organizational policies and proce-
dures that provide the framework for software
engineering projects. These policies and pro-
cedures might need to be adjusted for effec-
tive software development and maintenance
requirements. In addition, several policies
specific to software engineering might need
to be in place or established for the effective
management of software engineering at the
organizational level. For example, policies are
usually necessary to establish specific organi-
zation-wide processes or procedures for soft-
ware engineering tasks such as software design,
software construction, estimating, monitoring
and reporting. Such policies are important for
effective long-term management of software
engineering projects across an organization
(e.g., one such policy could establish a con-
sistent basis for analyzing past project perfor-
mance and implementing improvements).

Another important aspect of organiza-
tional management is the use of personnel
management policies and procedures for
hiring, training and mentoring — not only
for a project’s success, but also for the orga-
nization’s long-term success. Given the pro-
jected scarcity of skilled software engineers,
it is important to provide an environment that
attracts and retains good talent. Software
engineering personnel can present unique
training or personnel management chal-
lenges (e.g., maintaining currency in a context
where the underlying technology undergoes
rapid and continuous change) as part of career
development.

Communication management is also often
mentioned as an overlooked but important
aspect of success in a field where a pre-
cise understanding of user needs, software
requirements and software designs is nec-
essary. Furthermore, portfolio manage-
ment is desirable, which provides an overall
view of software under development in var-
ious projects and programs (integrated proj-
ects) of planned software, and of software
already in use in an organization. Also, soft-
ware reuse can be a key factor in maintaining
and improving productivity and competitive-
ness. Effective reuse requires a strategic vision

that reflects the advantages and disadvantages
of reuse.

Software engineers should have a sound
understanding of the aspects of management
that are unique to software projects, and they
should also have some knowledge of the more
general aspects of management discussed
in this KA (even in the first few years after
graduation).

Certain attributes of organizational cul-
ture and behavior, as well as management of
functional areas of the enterprise outside the
immediate software engineering realm, can
influence an organization’s software engi-
neering processes, albeit indirectly. Software
projects are often targeted at changing the
way people work — but culture change is dif-
ficult, complicated and unlikely to succeed
without a significant effort. For this reason,
leadership is an important attribute for pro-
gram managers, as they often need to lead
the charge for digital transformation. They
might need to galvanize their teams and other
stakeholders to bring their very best to every
project pursuing major change.

Extensive information concerning project
management can be found in the Guide to
the Project Management Body of Knowledge
(PMBOK Guide fifth edition) and the Software
Extension to the PMBOK® Guide (SWX) [1,
2]. Each of these guides includes 10 project
management KAs: project integration man-
agement, project scope management, project
time/schedule management, project cost man-
agement, project quality management, project
resource/human management, project com-
munications management, project risk man-
agement, project procurement management
and project stakeholder management. Each
KA has direct relevance to this SEM KA.

Additional information is also provided in this
KA’s references and list of Further Readings.

This SEM KA discusses the software
project management processes shown as the
first five topics in Figure 9-1 (Initiation and
Scope Definition, Software Project Planning,
Software Project Enactment, Review and
Evaluation, Closure), as well as Software
Engineering Measurement (the sixth topic
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Figure 9.1. Breakdown of Topics for the Software Engineering Management KA

shown in the figure) and Software Engineering
Management Tools (the seventh topic).

Unfortunately, a common perception of
the software industry is that software prod-
ucts often are delivered late, are over budget,
are of poor quality and have incomplete
functionality. Measurement-informed man-
agement — a basic principle of any true engi-
neering discipline (see Measurement in the
Engineering Foundations KA) — can help
improve perception and reality. In essence,
management without measurement (qualita-
tive and quantitative) suggests a lack of disci-
pline, and measurement without management
suggests a lack of purpose or context. To be
effective, software engineers must use both
measurement and management.

The following working definitions are
adopted here:

+ Management is a system of processes and
controls required to achieve the strategic
objectives set by the organization.

* Measurement refers to the assignment
of values and labels to software engi-
neering work products, processes and
resources, plus the models derived from
them, whether these models are devel-
oped using statistical or other techniques

[3* 7, c8].

The software engineering project manage-
ment sections in this KA use the Software
Engineering Measurement section extensively.

This KA is closely related to others in the
SWEBOK Guide; reading the following KA
descriptions will be particularly helpful in
understanding this one:

* 'The Engineering Foundations KA describes
some general measurement concepts that
directly apply to the Software Engineering
Measurement section of this KA. In addi-
tion, the concepts and techniques pre-
sented in the Statistical Analysis section of
the Engineering Foundations KA apply
directly to many topics in this KA.

* The Software Requirements KA describes
activities that should be performed
during the project’s Initiation and Scope
Definition phase.

* 'The Software Configuration Management
KA deals with the identification, control,
status accounting and auditing of soft-
ware configurations, along with software
release management and delivery and
software configuration management tools.

* The Software Engineering Process KA
describes software life cycle models and
the relationships between processes and
work products.
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* ‘The Software Quality KA emphasizes
quality as a management goal and as an aim
of many software engineering activities.

* ‘The Software Engineering Economics
KA discusses how to make software-re-
lated decisions in a business context.

BREAKDOWN OFTOPICS FOR
SOFTWARE ENGINEERING
MANAGEMENT

Because most software development life cycle
(SDLC) models require similar activities that
may be executed in different ways, the topic
breakdown, shown in Figure 9-1, is activi-
ty-based. The top-level elements shown in
the figure are activities that are usually per-
formed when a software development project
is being managed, regardless of which SDLC
model is being used (see Software Life Cycle
Models in the Software Engineering Process
KA). This breakdown does not recommend
a specific life cycle model. However, it is
important to note the choice of the SDLC
can have a impact on program activities to
accommodate changing requirements.

Delivery speed, continuous adaptation and
frequent modular upgrades to deliver new
capabilities are often key business differenti-
ators and project management imperative [11,
13]. These imperatives should be balanced
with risk management activities.

Several software life cycle process models
have been and are being developed to shorten
development cycles in response to changing
business needs, specifically, changing soft-
ware requirements. Most of these pro-
cesses involve Agile SDLC approaches [14].
The Agile approach assumes that teams can
develop high-quality, adaptive software
using continuous design improvement prin-
ciples and testing based on rapid feedback
and change. In comparison, the traditional
approach assumes that software-intensive sys-
tems are fully specifiable and predictable and
can be built through meticulous and exten-
sive planning. The management style asso-
ciated with the Agile approach emphasizes

leadership and collaboration at the team level,
whereas the management style of the highly
predictive approach is more formal (top-
down). Many Agile approaches integrate dif-
ferent management approaches.

For example, Dev/Sec/Ops is a culture
and an Agile approach to modern software
delivery that aligns development (Dev), secu-
rity (Sec) and operations (Ops) groups into an
integrated team focused on continuous, incre-
mental delivery of capabilities. The main char-
acteristic of Dev/Sec/Ops is that this approach
automates, continuously monitors and applies
security at all phases of the software life cycle:
plan, develop, build, test, release, deliver,
deploy, operate and monitor. In Dev/Sec/
Ops, testing and security are shifted to the
left through automated unit, functional, inte-
gration and security testing. This is a key
Dev/Sec/Ops  differentiator; security/quality
assurance (QA) and other nonfunctional
and functional capabilities are tested and
built simultaneously [11, 14]. Whereas Dev/
Sec/Ops encompasses the culture and pro-
cesses that enable rapid, continual delivery
of cyber-resilient systems, complex soft-
ware-embedded systems can have additional
demands that must also be integrated into
the Dev/Sec/Ops culture and processes, such
as safety. Elevating these demands to be on
par with Dev/Sec/Ops highlights the impor-
tance of incorporating quality into all program
aspects. ‘The complexity of the end-to-end
DevSecOps tools and of using emerging tech-
nologies such as artificial intelligence (AI) and
machine learning (ML) to leverage those tools
adds another dimension [15]. For example,
Agile and DevOps approaches are reasonably
well-established, but in case of Al-based soft-
ware, new SLDCs maybe required to manage
the complexity brought by AT to the software.

It is important to understand the differ-
ence between phases and activities and why
an activities breakdown is used. The Project
Management Institute (PMI) describes a
phase this way: “The completion and approval
of one or more deliverables characterizes a
project phase.” A deliverable is a measurable,
verifiable work product such as a specification,
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feasibility study report, detailed design docu-
ment or working prototype. Some deliverables
correspond to part of the project management
process, whereas others are the end products
or components of the end products for which
the project was conceived. The deliverables,
and hence the phases, are part of a generally
sequential process designed to ensure proper
control of the project and to attain the desired
product or service, which is the project’s objec-
tive. From a project management perspective,
phases help accomplish project objectives and
maintain control over the project.

The activity-based breakdown in Figure
9-1 shows what happens but does not imply
when, how or how many times each activity
occurs. The seven topics are the following:

* Initiation and Scope Definition, which
deals with the decision to embark on a
software engineering project

* Software Project Planning, which
addresses the activities undertaken to pre-
pare for a successful software engineering
project from the management perspective

* Software Project Enactment, which deals
with generally accepted SEM activities
that occur during a software engineering
project’s execution

* Review and Evaluation, which deals with
ensuring that technical, schedule, cost
and quality engineering activities are
satisfactory

¢ Closure, which addresses the activities
accomplished to complete a project

* Software Engineering Measurement,
which deals with the effective develop-
ment and implementation of measure-
ment programs in software engineering
organizations

* Software Engineering Management
Tools, which describes the selection and
use of tools for managing a software
engineering project

1. Initiation and Scope Definition

Project initiation focuses on reviewing the
software requirements and determining the

need, scope, feasibility, and authorization for
a software project Once project feasibility has
been established, the remaining tasks in this
section are specifying the software require-
ments and selecting the processes for require-
ments revision and review.

1.1. Determination and Negotiation of
Requirements [3* c3]
Determining and negotiating the project
requirements are the overarching goals of
the tasks undertaken during this phase (see
the Software Architecture KA and Software
Requirements KA). Activities should include
software requirements review (e.g., elicita-
tion, analysis, specification, and validation).
Methods and techniques should be selected
and applied considering the various stake-
holder perspectives. Requirements provide the
basis for all that follows on a software project
and are captured in a Project Charter or other
high-level project initiation document.
1.2. Feasibility Analysis [4% c5]
The purpose of the feasibility analysis is to
develop a clear description of project objec-
tives and to evaluate alternative approaches to
determine whether the proposed project solu-
tion is the best approach, given the constraints
of technology, resources, finances and changes
to ethical, environmental, and socio-technical
considerations. An initial project and product
scope statement, project deliverables, project
duration constraints, and an estimation of
resources needed should be prepared.

Resources (which can be internal or external
to the organization) include infrastructure,
support, and people with the necessary core
competencies. The feasibility analysis often
requires estimations of effort and cost based
on appropriate methods. (See Section 2.3,
Effort, Schedule and Cost Estimation.)

An initial work breakdown structure
(WBS) and context diagram may be devel-
oped during the project’s Initiation and Scope
Definition phase activities. Breaking work
into smaller tasks is a common productivity
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technique that makes the work more man-
ageable and approachable. As the project
tool that uses this technique, WBS is an
important project management document.
While a WBS can be used to organize cost
and schedule tracking, the WBS does not
itself include cost and schedule baselines.
Schedules are developed as part of the next
activity, project planning (section 2).

An engineering context diagram defines
the boundary between the system (or a part
of the system) and its environment, showing
the entities interacting with it. This document
is important in defining management and
technical interfaces and trade-offs that must
be considered [1]. While engineers are devel-
oping the WBS, they should consider all con-

figuration items as tasks to have under control.

1.3. Process for the Review and Revision of
Requirements [3* ¢3]
Given the inevitability of change, stake-
holders should agree on how requirements
and scope will be reviewed and revised (e.g.,
change management and trade-oft proce-
dures, iterative cycle retrospectives). (See
the Requirements KA.) This indicates that
scope and requirements will not be “set in
stone” but can and should be revisited at
predetermined points as the project unfolds
(for example, at the time when backlog pri-
orities are created or at milestone reviews).
If changes are accepted, then forward or
backward traceability analysis and risk anal-
ysis should be used to ascertain the impact
of those changes. For example, backward
traceability may link the test script to its
associated requirement and design. This
link helps monitor the status of require-
ments satisfaction and helps make deci-
sions to stop testing. It also helps in making
tradeoffs regarding requirements and
design. (See Section 2.5, Risk Management,
and Software Configuration Control in the
Software Configuration Management KA.)
A managed-change approach can also form
the basis for evaluating success during closure
of an incremental cycle or an entire project,

based on changes that occurred along the way.

(See Topic 5, Closure).
2. Software Project Planning

A key step in software project planning should
be selecting an appropriate SDLC model and,
perhaps, tailoring it based on project scope,
software requirements and a risk assess-
ment. The SWX [2] states that project life
cycles occupy a continuum from predictive to
adaptive. Factors that characterize the posi-
tions of software project life cycles within
the continuum include (but are not limited
to) the various ways requirements and plans
are handled, how risk and cost are managed,
and key stakeholder involvement. Highly pre-
dictive software project life cycles emphasize
requirements specification and detailed plan-
ning during the project’s initiation and plan-
ning phases. Detailed plans based on a known
architecture, requirements and constraints are
used to reduce risk and cost. Milestones are
planned, versus continuous key stakeholder
involvement. Highly adaptive software project
life cycles, on the other hand, are character-
ized by progressive requirements specification
based on short iterative development cycles.
Risk and cost are reduced by progressive evo-
lution of initial plans, and key stakeholders
are continuously involved [2].

Other factors to consider include the
nature of the application domain, func-
tional and technical complexity, and software
quality requirements. (See Software Quality
Requirements in the Software Quality KA.)

In all SDLCs, risk assessment should be
an element of initial project planning, and
the “risk profile” of the project should be dis-
cussed and accepted by all relevant stake-
holders. Software quality management
processes (see Software Quality Management
Processes in the Software Quality KA)
should be planned along with project plan-
ning. This planning should establish proce-
dures and responsibilities for software quality
assurance (SQA), verification and valida-
tion, reviews, and audits. (See the Software
Quality KA.) Processes and responsibilities
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for ongoing review and revision of the project
plan and related plans should also be clearly
stated and agreed upon.

2.1. Process Planning
[3*, ¢3, c4, c5], [5%, c1]

SDLC models span a continuum from pre-
dictive to adaptive. (See Software Life Cycle
Models in the Software Engineering Process
KA.) Predictive SDLCs are characterized by
the development of detailed software archi-
tecture and software requirements, detailed
project planning, and minimal planning
for iteration among development phases.
Adaptive SDLCs are designed to accommo-
date emergent software requirements and
iterative adjustment of plans. A highly pre-
dictive SDLC executes the first five pro-
cesses listed in Figure 9-1 in a linear sequence
with revisions to earlier phases only as nec-
essary. Adaptive SDLCs are characterized
by iterative development cycles. SDLCs in
the midrange of the SDLC continuum pro-
duce increments of functionality on either a
preplanned schedule (on the predictive side
of the continuum) or as the products of fre-
quently updated development cycles (on the
adaptive side of the continuum).

Well-known SDLCs include the water-
fall, incremental and spiral models, plus var-
ious Agile software development approaches
[2, 11] [3% c2].

Relevant methods (see the Software
Engineering Models and Methods KA) and
tools should be selected as part of planning.
Automated tools that will be used throughout
the project should also be planned for and
acquired. Tools might include those for
project scheduling, software requirements,
software design, software construction, soft-
ware maintenance, software configuration
management, software engineering process
and software quality, among others. Many of
these tools should be selected based primarily
on the technical considerations discussed in
other KAs, but some of those concerns are
closely related to the management consider-
ations discussed in this chapter.

2.2. Determine Deliverables
[3*, c4, c5, c6]

Each project activity’s work product(s) (e.g.,
software architecture design documents,
inspection reports, tested software) should be
identified and characterized. Opportunities to
reuse software components from previous proj-
ects or to use off-the-shelf software products
should be evaluated. Software procurement
and use of third parties to develop delivera-
bles should be planned and suppliers selected.
(See Section 3.2, Software Acquisition and
Supplier Contract Management.)

2.3. Effort, Schedule, and Cost Estimation

'The topic of estimation in general is addressed
in the Software Engineering Economics KA.
Questions like “What is estimation?” and
“Why do we estimate?” are addressed there.
This section addresses management-specific
estimation topics.

Estimating costs for software projects is an
error-prone process. The effort required for any
given software project depends almost entirely
on human elements: individuals’ experience
and capabilities, team members’ interactions,
and the culture of the software development
environment. Dynamic environmental factors,
such as rapid technology evolution, changing
and emergent requirements, and the intangible
nature of the product, also significantly affect
cost management. Estimating costs when this
much variability exists is difficult even when
significant historical data exists. Software
project managers should use multiple estima-
tion approaches and then reconcile the differ-
ences among the estimates [3, 10, 11].

When data is available, the estimated range
of effort required for a project, or parts of a
project, can be determined using a calibrated
estimation model based on historical size and
effort data. It is best to also use bottom-up
estimation techniques based on estimates
from those who will accomplish the work and
historical data based on similar projects [2].
Task dependencies can be established, and
potential opportunities for completing tasks
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concurrently and sequentially can be identi-
fied and documented, using a Gantt chart,
for example. In predictive SDLC projects,
the expected schedule of tasks, with projected
start times, durations and end times, is typ-
ically produced during planning. In adaptive
SDLC projects, an overall estimate of effort
and schedule is typically developed from the
initial understanding of the requirements, or,
alternatively, constraints on overall effort and
schedule may be specified and used to deter-
mine an initial estimate of the number of iter-
ative cycles and estimates of effort and other
resources allocated to each cycle.

Resource  requirements (for example,
people and tools needed) can usually be
translated into cost estimates. The estima-
tion of effort, schedule and cost is an itera-
tive activity that should be negotiated and
revised among affected stakeholders until
consensus is reached on resources and time
available for project completion. Program
managers often use a model that links four
association role types: responsible, account-
able, consulted, and informed (i.e., RACI) to
facilitate this process. Responsible roles pro-
duce deliverables; accountable roles check
the deliverables; consulted roles advise on
tasks; and informed roles are kept informed
throughout these processes. Project managers
should constantly monitor stakeholder require-
ments and changes as they evolve to analyze
their impact on the project cost and schedule.
'This is usually more important in Agile soft-
ware development projects, where stakeholder
requirements are dynamic because changes
might occur rapidly as the project progresses.
2.4. Resource Allocation [3*, ¢5, cl0, cl1]
Equipment, facilities and people should be
allocated to the identified tasks, including
allocating responsibilities for completing var-
ious project elements and the overall project.
A matrix that shows who is responsible for,
accountable for, consulted about and informed
about each task can be used. Resource allo-
cation is based on and constrained by the
availability of resources and their optimal

use, and by issues relating to personnel (e.g.,
productivity of individuals and teams, team
dynamics, and team structures).

2.5. Risk Management [3*, c9] [5%*, ¢5]
Risk and uncertainty are related but distinct
concepts. Uncertainty results from a lack of
information. Risk is effect of uncertainty on
objectives that has negative (threats) or positive
(opportunities) consequences on objectives.

Risk management entails identifying risk
factors, analyzing probability and potential
impact of each risk factor, prioritizing risk
factors, and developing risk mitigation strat-
egies to reduce the probability of a negative
event and to minimize the negative impact if
a risk factor becomes a problem. Risk man-
agement data can be used to represent the
project risk profile; this data is often part of
a risk register. A risk register is a document
used as a risk management tool. It can be used
to fulfill regulatory compliance, serving as a
repository for all risks identified and for addi-
tional information about each risk [2]. Risk
assessment methods (e.g., expert judgment,
historical data, decision trees and process
simulations) can sometimes be used to iden-
tify and evaluate risk factors.

Project abandonment conditions can also
be determined with all relevant stakeholders.
Software-unique aspects of risk, such as soft-
ware engineers’ tendency to add unneeded
features or the risks related to software’s
intangible nature, can influence risk man-
agement for software projects. Particular
attention should be paid to managing risks
related to software quality requirements such
as safety or security [11]. (See the Software
Quality KA.) Risk management should be
done not only at the beginning of a project,
but also at periodic intervals throughout the
project life cycle.

2.6. Quality Management
[3%, c4] [4%, c2]

According to the PMBOK® Guide, Project

qualitymanagementincludes the performing
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organization’s processes and activities that
determine quality policies, objectives and
responsibilities so the project will satisty
the needs for which it was undertaken. This
section discusses additional considerations
for managing software project quality [1].
Software quality requirements for a soft-
ware project and the associated work prod-
ucts should be identified, perhaps both
quantitatively and qualitatively. Quality
attributes of software include but are not
limited to safety, security, reliability, avail-
ability, performance, ease of use and ease of
modification. SWX Section 1.9 lists quality
attributes that are important for software
users (e.g., efficiency, safety, security, reli-
ability, availability) and quality attributes
that are important to software developers
and maintainers (e.g., maintainability is
important to those who provide sustain-
ment services) [1]. ISO/IEC 25000 series
of standards provides extensive lists of
software quality attributes that align with
different stakeholder needs [2]. This align-
ment is consistent with ISO/IEC/IEEE
15939 and practical software and systems
measurement (PSM) [2, 9.11].

Large portions of system functionality
are shifting from hardware to software to
capitalize on the increased flexibility and
speed of component delivery that soft-
ware can provide. However, with these
benefits come other challenges — for
example, the need for increased man-
agement of software quality require-
ments (e.g., cybersecurity) throughout
the SDLC [11]. Thresholds for acceptable
quality measurements should be set for
each software quality requirement based
on stakeholder needs and expectations.
Procedures concerned with ongoing SQA
and quality improvement throughout
the development process and with veri-
fying and validating the deliverable soft-
ware product should also be specified
during quality planning (e.g., technical
reviews and inspections or demonstra-
tions of completed functionality). (See
the Software Quality KA.)

2.7. Plan Management [3*, c4]
Except for older predictive programs, doc-
umenting and managing formal plans are
becoming less emphasized in managing most
software projects. (e.g., documentation plans
are rarely used, especially when Model-Based
Systems Engineering (MBSE) is used for
product data). The said, where they are used,
plans should be developed and managed for
software projects when change is expected.
The magnitude of the planning effort and the
plan’s content should be determined partly
by the risk of not developing the plan. The
management of the project plan should itself
be planned. Plans and processes selected for
software development should be systemat-
ically monitored, reviewed, reported and,
when appropriate, revised. Plans associated
with supporting processes (e.g., documenta-
tion, software configuration management,
and problem resolution) also should be man-
aged. Reporting, monitoring and controlling
a project should fit within the selected SDLC
and the realities of the project. Plans should
account for the various artifacts that will be
used to manage the project.

Project managers of predictive life cycle
software projects put substantial effort into
up-front development of the project plan and
integration of subsidiary plans developed
by support personnel from other organiza-
tional units (e.g., estimation specialists in the
Project Management Office (PMO)).

In other types of programs (e.g., adap-
tive programs) where formal plans are not
usually used, the emphasis should be on
selecting and retaining project information
useful in project control and future projects,
and establishing strategy, policies, and pro-
cedures. For example, in adaptive programs,
managers will usually spend less effort up
front on developing detailed scope, cost and
schedule plans. But significant effort is typ-
ically spent defining monitor and control
processes, such as requirements traceability,
to ensure coordination among the project
members or teams as the emerging plans are
implemented [2].
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3. Software Project Execution

During software project enactment (also
known as project execution), plans are imple-
mented, and the processes embodied in the
plans are enacted. Throughout, there should
be a focus on adherence to the selected SDLC
processes, with an overriding expectation that
adherence will satisfy stakeholder require-
ments and achieve the project’s objectives.
Fundamental to enactment are the ongoing
management activities of monitoring, con-
trolling and reporting.

3.1. Implementation of Plans [4* c2]
Project activities should follow the project plan
and supporting plans. Project activities use
resources (personnel, technology and funding)
and generate work products (software design,
software code and software test cases).

3.2, Software Acquisition and Supplier

Contract Management [3%*, c3, c4]
Software acquisition and supplier contract
management concern issues involved in con-
tracting with customers of the software
development organization who acquire the
deliverable work products and with suppliers
who supply products or services to the soft-
ware engineering organization.

Software acquisition is common practice
in software development projects, with inte-
grated development environments (IDEs)
and package libraries allowing software
engineers to acquire third-party libraries
with minimal steps, facilitating the assess-
ment of risk, legality and suitability.
However, software is no longer exclusively
acquired as a shrink-wrapped product via
a complex supply chain process and pur-
chasing route. The ease of acquiring soft-
ware has resulted in a common attack
surface and led to security vulnerabilities.
Organizations should consider introducing
technical or procedural controls to minimize
risk potentially exposed by unfiltered access
to external library repositories.

The different software acquisition classes
include commercial off-the-shelf (COTS)
software — an existing product acquired “as
is” from another software vendor, with appli-
cable license terms; software developed exclu-
sively for the organization by another party
— typically contracted and sometimes a cus-
tomization of COTS software; open source
software — nominally free, although the orga-
nization may purchase enhanced support or
maintenance and must review the license for
restrictions on use; customer loaned software
— typically to provide simulation or integra-
tion with another system element; software as
a service (SaaS) — which might include soft-
ware the organization rents to fulfill a partic-
ular need (for example, a cloud-based hosting,
source control or development environment).

Software projects typically use different
acquisition approaches to obtain the necessary
software components. However, regardless of
how the software components are obtained,
the following activities should be performed:
verifying that each component is complete,
correct and consistent concerning the archi-
tectural design and software requirements for
that component; integrating the components;
verifying that the integrated components are
correct, complete and consistent concerning
the architectural design and the software
requirements; and validating that the inte-
grated components will satisfy their intended
purpose when used in their intended oper-
ating environment.

Different acquisition approaches (for
obtaining software components) require dif-
ferent approaches to managing the project.
For example, custom development requires
detailed planning for the numbers and skills
of the software developers, organizing the
development team(s), allocating requirements
to the teams, specifying project metrics to be
collected, monitoring progress, and applying
corrective actions when actual progress does
not agree with planned progress. Licensing
components involves evaluating candidate
components; selecting appropriate compo-
nents; and negotiating terms, conditions, and
delivery dates for the selected components.
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This might involve selecting appropriate
contracts, such as fixed price, time-and-mate-
rials, cost plus fixed fee, and cost-plus incentive
fee. Agreements with customers and suppliers
typically specify the scope of work and the
deliverables. The agreements can also include
special clauses, such as clauses establishing
penalties for late delivery or no delivery, and
intellectual property agreements that specify
what the suppliers are providing and what
the acquirer is paying for, plus what will be
delivered to and owned by the acquirer. For
software developed by suppliers (both those
internal to and those external to the software
development organization), agreements com-
monly establish software quality requirements.

In software contracting with suppliers,
data set acquisition is usually important. It
includes the process of obtaining specific
datasets from external vendors or partners
as part of a software development project or
service agreement. This can occur in various
scenarios, such as: date licensing agreements,
data provisioning, custom data acquisition
and data integration services.

After the agreement has been put in place,
executing the project in compliance with
the terms of the agreement should be man-
aged. (See Chapter 12, Software Extension
to the PMBOK® Guide (SWX), Software
Procurement Management, for more infor-
mation on this topic [2].)

3.3. Implementation of Measurement Process
[3%, ¢7]

The measurement process should be enacted
during the software project to ensure that
relevant and useful data is collected. (See
Sections 6.2, Plan the Measurement Process,
and 6.3, Perform the Measurement Process.)
3.4.  Monitor Process [3*, c8]
Adherence to the scope, project plan and
related plans should be assessed continually
and at predetermined intervals. Outputs and
completion criteria for each task should also
be assessed. Deliverables should be evaluated

for their required characteristics (for example,
via inspections or by demonstrating working
functionality). Effort expenditure, schedule
adherence, costs to date, and resource use
should be analyzed. The project risk pro-
file (see Section 2.5, Risk Management)
should be revisited, and adherence to soft-
ware quality requirements should be evalu-
ated (see Software Quality Requirements in
the Software Quality KA).

Measurement data should be analyzed.
(See Statistical Analysis in the Engineering
Foundations KA.) Variance analysis should
be conducted to determine deviation of actual
from expected outcomes and values. This anal-
ysis might examine cost overruns, schedule
slippage or other measures. Outlier identifica-
tion and analysis of quality and other measure-
ment data should be performed (e.g., defect
analysis). (See Software Quality Measurement
in the Software Quality KA.) Risk exposures
should be recalculated. (See Section 2.5, Risk
Management.) These activities can enable
problem detection and exception identification
based on thresholds that have been exceeded.
Outcomes should be reported as necessary
or when thresholds have been exceeded. For
example, the timely identification, mitigation,
and resolution of software security vulnerabil-
ities and weaknesses that exceed expectations
can affect the system’s security posture [11].
3.5. Control Process [3*, ¢7, c8]
Project monitoring activities provide the basis
for making decisions. Where appropriate, and
when the probability and impact of risk fac-
tors are understood, changes can be made to
the project. This may take the form of cor-
rective action (e.g., retesting certain software
components). It might involve incorporating
additional actions (e.g., deciding to use pro-
totyping to assist in software requirements
validation; see Prototyping in the Software
Requirements KA). It might also entail
revising the project plan and other project
documents (e.g., the software requirements
specification) to accommodate unanticipated
events and their implications.
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In some instances, the control process
might lead to abandonment of the project.
In all cases, the software development team
should adhere to software configuration con-
trol and software configuration management
procedures. (See the Software Configuration
Management KA.) Decisions should be doc-
umented and communicated to all relevant
parties, plans should be revisited and revised
when necessary, and relevant data should
be recorded. (See Section 6.3, Perform the
Measurement Process.)
3.6. Reporting [3*, cll]
Progress to date should be reported at spec-
ified and agreed-upon times both within the
organization (e.g., to a project steering com-
mittee) and to external stakeholders (e.g., cli-
ents or users). Reports should focus on the
information needs of the target audience
as opposed to the detailed status reporting
within the project team.

4. Software Review and Evaluation

At prespecified times and as needed, overall
progress toward the stated objectives and
satisfaction of stakeholder (user and cus-
tomer) requirements should be evaluated.
Similarly, assessments of the effectiveness of
the software process, the personnel involved,
and the tools and methods used should also
be undertaken regularly and as circum-
stances demand.

4.1. Determining Satisfaction of Requirements
[4%, c8]

Achieving stakeholder satisfaction is a prin-
cipal goal of the software engineering man-
ager. Progress toward this goal should be
assessed periodically. Progress should be
assessed upon achieving a major project
milestone (e.g., completing software design
architecture or completing a software tech-
nical review) or upon completion of an iter-
ative development cycle that results in a
product increment. Variances from software

requirements should be identified, and appro-
priate actions should be taken.

As in the control process activity above (see
Section 3.5, Control Process), software con-
figuration control and software configuration
management procedures should be followed
(see the Software Configuration Management
KA). Decisions should be documented and
communicated to all relevant parties; plans
should be revisited and revised as neces-
sary; and relevant data should be recorded
(see Section 6.3, Perform the Measurement
Process).

4.2, Reviewing and Evaluating Performance
[3*,¢8, cl10]

Periodic performance reviews for project per-
sonnel can provide insight into the likelihood
of adherence to plans and processes and pos-
sible areas of difficulty (e.g., team member
conflicts). The various project methods, tools
and techniques should be evaluated for effec-
tiveness and appropriateness. The project’s
process should also be systematically and
periodically assessed for relevance, utility and
efficacy. Where appropriate, project changes
should be made and managed.

5. Closure

An entire project, a major project phase or
an iterative development cycle reaches clo-
sure when all the plans and processes have
been enacted and completed. The criteria for
project, phase or iteration success should then
be evaluated. Once closure has been estab-
lished, archival, retrospective and process
improvement activities can be performed.

5.1. Determining Closure [1, 3.7, 54.6]
Closure occurs when the specified tasks for
a project, a phase or an iteration have been
completed and satisfactory achievement of
the completion criteria has been confirmed.
Software requirements can be confirmed as
satisfied or not, and the degree of achieving
the objectives can be determined. Closure
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processes should involve relevant stake-
holders and document relevant stakeholders’
acceptance; any known problems should be
documented.

5.2. Closure Activities [2,53.7,54.8]
After closure has been confirmed, project
materials should be archived in accordance
with stakeholder agreed-upon rules for
archival methods, location and duration —
possibly including destruction of sensitive
information, software and the medium on
which copies are resident. For example, these
rules could require that during closure, all data
is removed and destroyed from any devices
that contain relevant information before
physical disposal of the devices (e.g., the hard
drives of personal computers, servers, main-
frames, personal digital assistants (PDAs),
routers, firewalls, switches, tapes, diskettes,
CDs, DVDs, cell phones, printers, universal
serial bus (USB) data storage devices).

The organization’s measurement database
should be updated with relevant project data.
A project, phase or iteration retrospective
analysis should be undertaken so that issues,
problems, risks and opportunities encoun-
tered can be analyzed. (See Topic 4, Review
and Evaluation.) Lessons learned should be
drawn from the project and fed into organiza-
tional learning and improvement endeavors.

6. Software Engineering Measurement

The importance of software engineering mea-
surement for good management and engi-
neering practices is widely acknowledged.
(See Measurement in the Engineering
Foundations KA.) Effective software engi-
neering measurement has become one of
the cornerstones of organizational maturity.
Measurement can be applied to organiza-
tions, projects, processes and work products.
This section focuses on applying measure-
ment at the levels of projects, processes and
work products.

This section follows ISO/IEC/IEEE
15939 standard [6], which describes a pro-
cess to define the activities and tasks neces-
sary to implement a software measurement
process. The standard also includes a mea-
surement information model. This model in
the PSM Continuous Iterative Development

Measurement Framework report is also elab-
orated for SDLC approaches [9].

6.1. FEstablish and Sustain Measurement
Commitment [7% c1, c2]!

* Establish measurement requirements.
Each measurement endeavor should be
guided by organizational objectives and
driven by a set of measurement require-
ments established by the organization
and the project (e.g., an organizational
objective might be first to market).

* Establish the scope of measurement.
The project team should establish the
organizational unit to which each mea-
surement requirement is to be applied.
This might be a functional area, a
single project, a single site or an entire
enterprise. The temporal scope of the
measurement effort should also be con-
sidered because the time series of some
measurements might be required (e.g.,
to calibrate estimation models). (See
Section 2.3, Effort, Schedule and Cost
Estimation.)

* Establish the team’s commitment to
measurement. The commitment should
be formally established, communicated
and supported by resources.

¢ Commit measurement resources. An
organization’s commitment to mea-
surement is an essential factor for suc-
cess, as evidenced by the assignment of
resources for implementing the mea-
surement process. Assigning resources
includes allocation of responsibility for
the various tasks of the measurement
process (such as analyst and librarian).
Adequate funding, training, tools and

1 These two chapters can be downloaded free of charge from http://www.psmsc.com/PSMBook.asp.
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support to conduct the process should
also be allocated.

Plan the Measurement Process

[7% c1, c2]!

Characterize the organizational unit. The
organizational unit provides the context
for measurement, so the organizational
context should be explicit, including the
organization’s constraints on the mea-
surement process. The characterization
can be stated in terms of organizational
processes, application domains, tech-
nology, organizational interfaces and
organizational structure.

Identify information needs. Information
needs are based on the organizational
unit’s goals, constraints, risks, and prob-
lems and may be derived from business,
organizational, regulatory and/or product
objectives. Stakeholders should identify,
prioritize, document, communicate and
review these needs.

Select measures. Select candidate mea-
sures, with clear links to the information
needs. Select measures based on the pri-
orities of the information needs and other
criteria such as cost of collection; degree
of process disruption during collection;
ease of obtaining accurate, consistent
data; and ease of analysis and reporting.
Internal quality characteristics (see
Models and Quality Characteristics in
the Software Quality KA) are often not
contained in the contractually binding
software requirements. Therefore, con-
sider measuring the software’s internal
quality to provide an early indicator of
potential issues that might affect external
stakeholders.

Define data collection, analysis and
reporting procedures. This encompasses
collection procedures and schedules,
storage, verification, analysis, reporting
and data configuration management.
Select criteria for evaluating the infor-
mation products. The organizational
unit’s technical and business objectives

influence evaluation criteria. Information
products include those associated with
the product produced and those associ-
ated with the processes used to manage
and measure the project.

* Provide resources for measurement tasks.
The appropriate stakeholders should
review and approve the measurement
plan to include all data collection pro-
cedures; storage, analysis, and reporting
procedures; evaluation criteria; sched-
ules; and responsibilities. Criteria for
reviewing these artifacts should be estab-
lished at the organizational unit level or
higher and should be used as the basis for
these reviews. Such criteria should con-
sider experience, resource availability and
potential disruptions to projects when
changes from current practices are pro-
posed. Approval demonstrates commit-
ment to the measurement process.

o Identify resources to be made avail-
able for implementing the planned and
approved measurement tasks. Resource
availability may be staged in cases where
changes are piloted before widespread
deployment. Consider the resources
necessary for successful deployment of
new procedures or measures.

o Acquire and deploy supporting tech-
nologies. ‘This includes evaluating
available supporting technologies,
selecting the most appropriate tech-
nologies, acquiring those technologies
and deploying those technologies.

6.3. Perform the Measurement Process
[7%,¢c1, c2]

Integrate measurement procedures with rel-
evant software processes. The measurement
procedures, such as data collection, should
be integrated into the software processes they
measure. This might involve changing current
software processes to accommodate data col-
lection or generation activities. It might also
involve analyzing current software processes
to minimize additional effort and evaluating
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the effect on employees to ensure acceptance
of the measurement procedures. Consider
morale issues and other human factors. In
addition, communicate the measurement pro-
cedures to those providing the data. Training
and support might also be needed. Data anal-
ysis and reporting procedures are typically
integrated similarly into organizational and
project processes.

Collect data. Measurement data should be
collected and analyzed. Data should be col-
lected, verified and stored. Collection can
sometimes be automated by using SEM
tools (see Topic 7, Software Engineering
Management Tools) to analyze data and
develop reports. Data may be aggregated,
transformed or recorded as part of the analysis,
using a degree of rigor appropriate to the nature
of the data and the information needs. This
analysis typically produces graphs, numbers or
other indicators that inform conclusions and
recommendations to present to stakeholders.
(See Statistical Analysis in the Engineering
Foundations KA.) The results and conclusions
are reviewed using the organization’s formal
or informal process. Data providers and mea-
surement users should participate in reviewing
the data to ensure it is meaningful and accurate
and can result in reasonable actions.

Communicate results. Document and

communicate information products to users
and stakeholders.
6.4. Ewaluate Measurement [7%,¢c1,c2]
Evaluate information products and the mea-
surement process against specified evalua-
tion criteria, and determine the strengths
and weaknesses of the information products
or process. An internal process or an external
audit can be used to perform the evaluation,
including feedback from measurement users.
Record lessons learned in an appropriate
database.

Identify potential improvements. Such
improvements might be changes in the format
of indicators, changes in units measured or
reclassification of measurement categories.
Determine potential improvements’ costs

and benefits, and report appropriate improve-
ment actions.

Communicate proposed improvements to
the measurement process owner and stake-
holders for review and approval. Also, com-
municate the lack of potential improvements
if the analysis fails to identify any.

7. Software Engineering Management
Tools [3* c5, c6, c7]

SEM tools are often used to provide visibility
and control of SEM processes. Some tools are
automated, whereas others are manually imple-
mented. In addition, there has been a recent
trend toward using integrated suites of software
engineering tools throughout a project to plan,
collect and record, monitor and control, and
report project and product information. Tools
can be divided into the following categories:

Project planning and tracking tools. Project
planning and tracking tools can be used to
estimate project effort and cost and to prepare
project schedules. For example, some proj-
ects use automated estimation tools that use
a software product’s estimated size and other
characteristics as input and then estimate
the required total effort, schedule and cost.
Planning tools also include automated sched-
uling tools that analyze the WBS tasks, their
estimated durations, their precedence rela-
tionships and the resources assigned to each
task to produce a Gantt chart.

Tracking tools can be used to track project
milestones, regularly scheduled project status
meetings, scheduled iteration cycles, product
demonstrations and action items.

Risk management tools. Risk management
tools (see Section 2.5, Risk Management)
can be used to track risk identification, anal-
ysis and monitoring. These tools include sim-
ulation or decision trees to analyze the effect
of costs versus payoffs and subjective esti-
mates of the probabilities of risk events. For
example, Monte Carlo simulation tools can
be used to produce probability distributions
of effort, schedule and risk by algorithmi-
cally combining multiple input probability
distributions.
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Communication tools. Communication tools
can help provide timely and consistent infor-
mation to relevant stakeholders involved in
a project. Examples of such tools are email
notifications and broadcasts to team mem-
bers and stakeholders; regular communica-
tions of meeting minutes; and charts showing
progress, backlogs, and maintenance request
resolutions.

Measurement tools. Measurement tools sup-
port activities related to the software mea-
surement program. (See Topic 6, Software
Engineering Measurement.) There are few
completely automated tools in this cate-
gory. Measurement tools to gather, analyze
and report project measurement data may be
based on spreadsheets developed by project

team members or organizational employees.

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Fairley 2009 | Sommerville | Boehm and McGarry et
[3%] 2016 [4%] Turner 2003 [5*] | al. 2001 [7%]

1. Initiation and Scope

Definition

1.1. Determination and 3

Negotiation of Requirements ¢

1.2. Feasibility Analysis c4

1.3. Process for the Review and 3

Revision of Requirements

2. Software

Project Planning

2.1. Process Planning c2,c3,c4,c5 cl

2.2. Determine Deliverables c4, c5, c6

2.3. Effort, Schedule and Cost 6

Estimation ¢

2.4. Resource Allocation c5, c10, cl11

2.5. Risk Management c9 c5

2.6. Quality Management c4 c24

2.7. Plan Management c4

3. Software

Project Enactment

3.1. Implementation of Plans c2

3.2. Software Acquisition and 3 4

Supplier Contract Management € ¢

3.3. Implementation of o7

Measurement Process

3.4. Monitor Process c8

3.5. Control Process c7, c8

3.6. Reporting cll

4. Review and Evaluation

4.1. Determining Satisfaction

of Requirements
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4.2. Reviewing and

Evaluating Performance c8, c10

5. Closure

5.1. Determining Closure

5.2. Closure Activities

6. Software Engineering
Measurement

6.1. Establish and Sustain
Measurement Commitment

cl, c2

6.2. Plan the
Measurement Process

cl,c2

6.3. Perform the
Measurement Process

cl, c2

6.4. Evaluate Measurement

cl, c2

7. Software Engineering

Management Tools c5, ¢6, c7

FURTHER READINGS

A Guide to the Project Management Body of
Knowledge (PMBOK® Guide) [1].

The PMBOK® Guide provides guidelines for
managing individual projects and defines
project management-related concepts. It also
describes the project management life cycle
and its related processes, and the project life
cycle. It is a globally recognized guide for the
project management profession.

Software Extension to the Project Management
Body of Knowledge (PMBOK®) Guide [2].

SWX provides adaptations of and extensions
to the generic practices of project manage-
ment documented in the PAMBOK® Guide for
managing software projects. The primary con-
tribution of this extension to the PMBOK®
Guide is a description of processes for man-
aging adaptive life cycle software projects.

IEEE Standard Adoption of ISO/IEC 15939 [6].

This international standard identifies a pro-
cess that supports defining suitable measures

to address specific information needs. It iden-
tifies the activities and tasks necessary to suc-
cessfully identify, define, select, apply and
improve measurement within an overall project
or organizational measurement structure.

J. McDonald, Managing the Development of
Software Intensive Systems, Wiley, 2010 [8].

'This textbook introduces project management
for beginning software and hardware devel-
opers, plus unique advanced material for expe-
rienced project managers. Case studies are
included for planning and managing verifica-
tion and validation for large software projects
and complex software and hardware systems,
as well as inspection results and testing met-
rics to monitor project status.
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CHAPTER 10

Software Engineering Process

ACRONYMS

BPMN
CASE

Business Process Modeling Notation

Computer-Aided Software
Engineering

Capability Maturity Model
Capability Maturity Model

Integration

CMM
CMMI

GQM | Goal-Question-Metric

IDEFO | Integration Definition 0

PDCA | Plan-Do-Check-Act

SLCM | Software Life Cycle Model

SLCP | Software Life Cycle Process

UML | Unified Modeling Language
INTRODUCTION

This chapter considers the software engi-
neering process from several perspectives:
concepts, life cycles, and software engineering
process assessment. The software engineering
community has been very active concerning
the standardization of many of the aspects of
the software engineering process.

BREAKDOWN OFTOPICS FOR
THE SOFTWARE ENGINEERING
PROCESS

The topic breakdown for the Software
Engineering Process KA is shown in
Figure 10.1.

1. Software Engineering Process
Fundamentals

1.1 Introduction [1,¢5],[13]
Software engineering processes involve work
activities software engineers conduct to build
and operate software. When the discipline
of software engineering emerged, scientists,
engineers and technicians had to look at
existing disciplines to understand the scope
of the software engineering process. An engi-
neering process consists of a set of interrelated
activities that transform one or more inputs
into outputs while consuming resources to
accomplish the transformation. As part of
engineering, software engineering uses pro-
cesses similar to those of other types of engi-
neering. As engineers create devices or other
products, they progress through various steps,
expending significant design effort, relying
on a vast trove of knowledge as they do so, at
the time that they gain knowledge, i.e. learn,
about the process they are performing and the
product they are creating.

Beginning in the 1960s and continuing in
the 1970s, engineering design and manufac-
turing provided a baseline — a foundation —
for what would later become a new discipline.
In those years, it was agreed that the process
of building software would be decomposed
into processes that could include design and
manufacturing, and later, operations. Some
of the processes needed to construct software
systems fit into the design class, and others fit
into the manufacturing class. Today, the soft-
ware engineering community is still learning
and, therefore, still improving the software
engineering process. Currently, a wide con-
sensus exists concerning that building soft-
ware systems requires lots of design and
learning effort focused on the product under
construction, and on the process. As will be

10-1
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Software Engineering
Process
[
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Software Engineering Life Cvel. Software Process Assesment
Process Fundamentals M HeLycles and Improvement

Introduction

Software Engineering
Process Definition
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|, Life Cycle Definition, Process
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— Rationale for Life Cycles

L, The Concepts of Process
Models and Life Cycle Models

Some Paradigm for Development

Life Cycle Models

Development Life Cycle
> Models and Their Engineering

Overview of Software Process
Assessment and Improvement

Global Question Metric (GQM)
Framework-Based-Method

Process Assessment and
Improvement in Agile

> The Management of SLCPs

Software Engineering Process
Management

> Software Life Cycle Adaptation
> Practical Considerations

Software Process Infrastructure,

Tools, Methods

Software Engineering Process
— Monitoring and the Relation

to the Software Product

Figure 10.1. Breakdown of Topics for the Software Engineering Process KA

discussed below, no ideal process, or set of
processes exists: software processes must be
selected, adapted, and applied as appropriate
for each project and each organizational con-
text. It is essential that the software engi-
neering process management is supported by
empirical measurement.

The concept of a project emerges as an
“endeavor with defined start and finish cri-
teria undertaken to create a product or service
in accordance with specified resources and
requirements” [1] or a “temporary endeavor
undertaken to create a unique product, service,
or result” [13]. It is a concept of the manage-
ment discipline linked to clear objectives and
bound by a limited time frame, as discussed in
The Software Engineering Management KA.
Software engineering processes are usually
performed in the context of projects.

Many of the processes of the more conven-
tional engineering disciplines (e.g., electrical or
chemical) include design and manufacturing,
where manufacturing produces multiple units
of a system (e.g., a chemical reactor). You do

not produce multiple units in the case for soft-
ware systems, though manufacturing is useful
to describe the need to build the many software
units that comprise a software system, and you
have a flow of units that can be modeled and
managed; likewise, in manufacturing you have
a flow of materials. In electrical or chemical
engineering, the operation of the engineering
systems transforms (raw) materials, energy and
physical entities into other forms of material
or energy. For the software engineering dis-
cipline, an analogy for this operation is the
execution of a software unit (the output from
a software engineering set of processes) that
transforms one kind of data into another.

In the rest of the section, the term process
will denote work activities, not the execution
of software.

The Software Engineering Process KA
is closely related to most of the SWEBOK
KAs; in particular the Software Engineering
Management, Software Engineering Models
and Methods, Software Quality, Software
Architecture, and Software Testing KAs. The



Measurement and Root Cause Analysis sec-
tions in the Engineering Foundations KA are
also closely related.

1.2 Software Engineering Process Definition
[1,c5] [2] [7][14][20]

A process is a “set of interrelated or interacting
activities that transforms inputs into outputs”,
where activity is a “set of cohesive tasks of a pro-
cess,” and a task is a “required, recommended,
or permissible action, intended to contribute to
the achievement of one or more outcomes of
a process” [1]. According to [2], a process is a
“predetermined course of events defined by its
purpose or by its effect, achieved under given
conditions.” A third definition, following [7],
is a “system of activities, which use resources
to transform inputs into outputs.” And a fourth
one is a “set of interrelated or interacting activ-
ities which transforms inputs into outputs to
deliver an intended result” [20]. That is, the
description of a process includes required
inputs, transforming activities, and the out-
puts generated. These definitions address any
processes that are applied to the software
part of software systems. Software systems
also include hardware, and they also involve
people and manual procedures. The output of
one process can be an input to another process.
Processes may include controls (e.g. directives
and constraints) and enabling mechanisms
(e.g. tools, technologies or resources such as
workforce and infrastructure) associated with
the processes [14].

2. Life Cycles’

2.1. Life Cycle Definition, Process Categories,
and Terminology
[1,c5-6][3*%,c2][8*,c1-3][13]

A life cycle, according to [1], is the “evolution
of a system, product, service, project or other
human-made entity from conception through
retirement.” In software engineering, life
cycles help convey information about software

SOFTWARE ENGINEERING PROCESS 10-3

systems, the “system[s] for which software is
of primary importance to the stakeholders”
[1]. The concept of life cycles was put in place
because simply identifying and defining the
processes required to produce software did
not adequately describe all the complexity
of software systems. It was also necessary to
define life cycles, which include a number of
processes and constraints [8].

In software engineering, development refers
to a crucial stage of a system, product, ser-
vice or project life cycle: that of building (or
changing) a software system according to
the stakeholders’ needs. From a production/
industrial management perspective, software
systems are referred to as products. In this
context, the term software product development
lifecycle makes sense.

Product Ilife cycle can be defined as the
“series of phases that represent the evolution
of a product, from concept through delivery,
growth, maturity, to retirement” [13]. This
definition is not specific to software sys-
tems but applies to all products more gener-
ally. Likewise, the life cycle concept, which is
linked to the product concept, is not specific
to software engineering.

Software systems contain software units
that are an “atomic-level software component
of the software architecture that can be sub-
jected to stand-alone testing.” (See the Testing
KA. The life cycle of a software system (as
long as software engineering uses an inter-
disciplinary approach), comprises all the pro-
cesses, activities and tasks from the ideation of
the software system to the retirement of the
system, including production, operation and
evolution, as well as acquisition, when needed,
and supply. Likewise, we can look at the life
cycle of an element of a software system (a
software unit). A software system life cycle
will consider both the business and the tech-
nical needs of the stakeholders and the sys-
tem’s ability to produce, as the outcome of the
different software life cycle processes (SLCPs)
performed by a team, a product that meets the
stakeholders’ needs, with the required quality

1 Lifecycle, life-cycle and life cycle are different spellings. Merriam-Webster prefers the spelling “life cycle”.
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level for its users and for all the different
stakeholders.

The following paragraphs enumerate the
process categories, as in [1]. These process
categories reflect the multiple perspectives
involved in producing a software system: (1)
technical processes including engineering
practices to build, make, evolve, operate and
retire software products; (2) technical man-
agement processes that cover planning and
control, as well as configuration management,
risk management, information manage-
ment and quality assurance; (3) organiza-
tional project-enabling processes that support
life cycle model and infrastructure manage-
ment, portfolio management, and human
resources, knowledge and quality manage-
ment; and finally (4) agreement processes,
which are essential to support collective deci-
sion-making, as well as acquisition and supply
processes.

A breakdown of these
as follows:

processes  is

1. Technical processes

a) Business or mission analysis process

b) Stakeholder needs and requirements
definition process

¢) System/software requirements defini-
tion process

d) Architecture definition process

e) Design definition process

f) System analysis process

g) Implementation process

h) Integration process

i) Verification process

j) Transition process

k) Validation process

) Operation process

m) Maintenance process

n) Disposal process

2. Technical management processes
a) Project planning process
b) Project assessment and control process
¢) Decision management process
d) Risk management process
e) Configuration management process
f) Information management process

g) Measurement process
h) Quality assurance process

3. Organizational project-enabling processes
a) Life cycle model management process
b) Infrastructure management process
¢) Portfolio management process
d) Human resource management process
e) Quality management process
f) Knowledge management process

4. Agreement processes
a) Acquisition process
b) Supply processes
2.2. Rationale for Life Cycles [8*,c2-3][12]
Creating, operating and retiring software
products require a number of processes, with
their activities and tasks, and a number of
constraints. As noted above, software systems
involve people and manual procedures, as well
as software and hardware. Defining software
processes, following [12], requires specifying
inputs and outputs. Inputs from processes
are, very often, outputs from other processes.
Therefore, life cycle processes are interre-
lated processes; that is, each individual pro-
cess (its inputs and outputs) may depend on
other processes. The interrelated nature of the
processes involved make the overall software
engineering process highly complex.

The specification of life cycles is a pow-
erful tool for implementing an engineering
approach to the creation, operation and retire-
ment of software systems. A life cycle should
be defined following engineering principles
that guide engineering as a discipline [8]. The
specification of a life cycle includes the spec-
ification of every process and the associated
constraints. The process specification should
be useful to humans so that they can com-
municate with one another using this spec-
ification. The specification should be easy to
understand and correct because life cycle spec-
ifications are the basis for technical and engi-
neering management, including coordination
and agreement, measurement, assessment and
improvement, and quality management.



2.3. The Concepts of Process Models and Life
Cycle Models [3*,c2][10*,c2][c2]

Section 2.1 provides a number of software
life cycle definitions. In reference [2], a new
definition introduces the concept of a stan-
dard as a commonly accepted guiding docu-
ment, stating that a “project-specific sequence
of activities ... is created by mapping the
activities of a standard onto a selected soft-
ware life cycle model (SLCM).” That s, a life
cycle is created in conformance with the life
cycle model.

Examples of well-known life cycle models
for product development are, among others,
the waterfall model, the V-model, the incre-
mental model, the spiral model and the Agile
model [2, 3, 10].

2.4. Some Paradigms for Development Life
Cycle Models [3*,c2-3][8%,c2-3]
[9%,c1][10*c1][2][11][12]

Each software system has its own features
reflecting the stakeholders’ needs, both busi-
ness and technical. A suitable life cycle will
consider all these needs. As explained in
Section 2.3, a software life cycle will be
defined in conformance with (partially or fully
conforming to) an SLCM. Some authors use
the term “development” to refer to SLCM,
e.g. “iterative development” instead of “itera-
tive (software) life cycle model”. Types of life
cycles are described below.

Predictive life cycles are “a form of project
life cycle in which the project scope, time,
and cost are determined in the early phase
of the life cycle” [13]. Predictive life cycles
assume that the set of requirements that will
be implemented is a closed set that will not
undergo substantive change unless a force
majeure occurs.

An iterative life cycle is “a project life cycle
where the project scope is generally deter-
mined early in the project life cycle, but
time and cost estimates are routinely mod-
ified as the project team understanding of
the product increases. Iterations develop the
product through a series of repeated cycles,
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while increments successively add to the func-
tionality of the product” [3, 8, 13]. The itera-
tions duration is defined for each project. The
method chosen (see the Software Engineering
Models and Methods KA) would prescribe
the role and size of iterations.

In an ewvolutionary life cycle, a product
or service changes over its lifetime. It may
happen because requirements and customer
needs change, but it also may happen because
requirements are introduced into the product
in successive steps and not as a complete and
atomic set [3, 8]. “Successive steps” is a syn-
onym for “iterations.”

An incremental life cycle is “an adaptive
project life cycle in which the deliverable is
produced through a series of iterations that
successively add functionality within a pre-
determined time frame. The deliverable
contains the necessary and sufficient capa-
bility to be considered complete only after
the final iteration” [3, 8, 13]. Incremental
life cycles are not always predictive, but they
can be. Incremental development is a “software
development technique in which require-
ments definition, design, implementation,
and testing occur in an overlapping, iterative
(rather than sequential) manner, resulting in
incremental completion of the overall soft-
ware product” [2].

Continuous development refers to software
engineering practices that allow for frequent
releases of new systems (including soft-
ware) to staging or various test environments
through the use of automated tools [8, 9, 11].

A life cycle can enforce a rule that the
requirements specifications cannot be changed
once the requirements process has been final-
ized and the customer has agreed to the
specifications. This happens, for example,
in predictive life cycles. On the other hand,
when the life cycle does not preclude changes
in the requirements specifications, even after
the customer has agreed to them and signed
off on them, but allows them to change at any
point [upon negotiation of interested parties],
then the life cycle is said to be gpen to change.
Being open to change is one of the claims of
Agile development [9, 10].
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2.5. Development Life Qycle Models and Their
Engineering Dimension [3*,c2][8*,c2-3]
[9%,c1][10* c1][2][11][16]
[17][18][19][25][26][27]

Several life cycle models have become well
known with the development of software
engineering since its inception. One model,
which became popular early in the history of
the discipline, is the waterfall model [3], that
falls into the category of predictive, described
previously. The waterfall model approach for
product development uses a number of phases,
including requirements, preliminary design,
detailed design, coding and testing. It imple-
ments a very strict process, in which one phase
cannot be started until the previous one is fin-
ished. The waterfall model was useful because
it introduced a systematization in the develop-
ment of software systems and, therefore, what
could be referred to as an engineering approach
to software product development. Many vari-
ants or extensions, such as the V-model [3],
with many different names and nuances, have
been introduced in the history of software
engineering. The waterfall model was an early
attempt to address the so-called software crisis
[3]. The waterfall model is document-driven.
Reference [2] defines the waterfall model as the
“model of the software development process
in which the constituent activities, typically
a concept phase, requirements phase, design
phase, implementation phase, test phase, and
installation and checkout phase, are performed
in that order, possibly with overlap but with
little or no iteration.” The waterfall model is
clearly an example of a predictive life cycle.
Some other paradigms, such as the incre-
mental life cycle, also attempted to address
the “software crisis.” In this model (see
Section 2.4), different phases occur in an
overlapping rather than sequential manner.
An incremental life cycle can also be a pre-
dictive life cycle. This would mean that the
requirements are defined and closed before
any other development phase is started. The
spiral model, introduced by Boehm, is evolu-
tionary and risk-driven, as opposed to docu-
ment- or code-driven [3]. Reference [2] defines

the spiral model as a “model of the software
development process in which the constit-
uent activities, typically requirements anal-
ysis, preliminary and detailed design, coding,
integration, and testing, are performed itera-
tively until the software is complete.” Another
popular model is rapid prototyping, a “type
of prototyping in which emphasis is placed
on developing prototypes early in the devel-
opment process to permit early feedback and
analysis in support of the development process”
[2]. The unified process, also known as unified
software development process, is an iterative
and incremental software development pro-
cess framework [25]. From the unified pro-
cess, the rational unified process (RUP®) is
documented in [26], and the OpenUP, man-
aged by the Eclipse Foundation [27].

The Agile Manifesto [16] effected a disrup-
tion in the software engineering community
by creating an abrupt change of mindset. The
difference was that Agile Manifesto signato-
ries claimed that the process should be open to
change — requirements could be modified at
any stage of the development process if users’
needs changed. Communication and mutual
trust between team/customer were essential.
Signatories claimed that team communication,
often face-to-face, and communication with
the customer were key. Nevertheless, the Agile
Manifesto does not say that documents (e.g.
to define requirements) are not needed, docu-
ments are needed [9, 10]. Signatories also advo-
cated for small software incremental deliveries,
as opposed to projects that applied the waterfall
model with a single software delivery at the end
of the project after months or years of working.
Agile makes a clear distinction between, on
the one side, values and principles (e.g., always
delivering value to the customer or a commit-
ment to technical excellence) and, on the other,
practices (peer programming, sprint planning
or retrospective). The Agile mindset [10] is dif-
ferent from the predictive mindset. The Agile
mindset is based on a number of values and
principles (e.g., the importance of communi-
cation, being open to change or commitment
to technical excellence and always delivering
value to the customer); this focus differentiates



Agile from the predictive mindset, which is
more focused on committing to the implemen-
tation of the requirements specifications. Agile
helps address complexity [8, 10].

Several misconceptions arose around Agile,
and some still remain. One is that Agile is a
method in itself, which it is not. Another is
that Agile is “faster” than waterfall because
you need not produce any document. A third
one is that Agile has a limited or unstructured
set of methods/practices; a chart that enumer-
ates several commonly used Agile methods
and practices can be found, for example, in
[18]. Several Agile methods became popular,
like Extreme Programming for product devel-
opment, Scrum for project management and
others. Even considering the ever rising pop-
ularity of the Agile life cycle model to address
complex projects, scaling up Agile for large
projects and portfolios is still challenging. The
perception today is that the Agile Manifesto
meant a significant disruption; nevertheless, it
is already 20 years old, and some authors think
that some of its principles might need to be
updated, informed by the experience devel-
opers have obtained in the past 20 years [17].

'The application of Agile practices has tran-
scended the software engineering process, and
the terms business agility and Agile organiza-
tions are now very common [19]. From a soft-
ware engineering point of view, Agile created
an opportunity for the industry to achieve a
reengineering and a better alignment of soft-
ware engineering processes and business stra-
tegic processes in organizations. The use of
an Agile approach by business processes is a
common scenario; this is reflected in the prin-
ciples of DevOps [11], for example, explained
later in this section, and process assessment
and improvement in Section 3.

'The need to provide more frequent releases,
the fact that users’ needs and technological life
cycles change more frequently, together with
the required alignment of the organizations’
strategic plans with the organizations’ I'T opera-
tions, has led to the creation of DevOps, defined
as a “set of principles and practices which
enable better communication and collaboration
between relevant stakeholders for the purpose of
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specifying, developing, and operating software
and systems products and services, and con-
tinuous improvements in all aspects of the life
cycle” [11]. The ability to provide more releases
more frequently, once adequate process manage-
ment has been defined, has become an advan-
tage that makes companies more competitive.

In the history of software engineering,
there has been a lot of controversy over soft-
ware life cycle models — for example, as
seen in debate over the merits of the water-
fall model versus the Agile model of software
development (See Section 2). This contro-
versy should be understood from a historical
perspective; new approaches have been dis-
ruptive or considered disruptive, and there
has been a lack of empirical measures to sup-
port evidence-based discussions about soft-
ware engineering. This situation has been
changing slowly but steadily. Using empirical
measures as the basis for making decisions is
an essential element of software engineering
[4, 8]. See also KA 9, Software Engineering
Management, and KA 12, Software Quality.
2.6. The Management of SLCPs [14]
'The life cycle for any software system contains
a number of stages. According to [14], these
stages are the following:

1. Concept: At this stage, stakeholders’
needs are identified, concepts will be
explored, and solutions will be proposed.

2. Development: At this stage, require-
ments representing the users’ needs will
be refined, solutions will be created, sys-
tems built, and all undergo the needed
verification and validation processes.

3. Production: This stage will have a dif-
ferent scope depending on the character-
istics of the software system under focus.
Generally speaking, it will include the
production and testing of the system.

4. Utilization: At this stage, the system
operates to satisfy users’ needs.

5. Support: At this stage, developers pro-
vide the required actions to achieve a sat-
isfactory operation.
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6. Retirement: At this stage, the team fol-
lows established procedures to dispose of
the system.

The stages are not supposed to be sequen-
tial, by any means. Actually, the specifica-
tion of the life cycle for a software system will
include the transitions between these stages.
It should be clear that these stages have been
identified for a general life cycle. Specific life
cycles will have specific stages, meaningful
to a particular project’s stakeholders; these
stages will fit into these general stages.

2.7. Software Engineering Process Management
[1%,¢5][2]

Process management is defined as “direction,
control, and coordination of work performed
to develop a product or perform a service” [2].
Several management levels govern the soft-
ware engineering process, as explained in ref-
erence [1], see KA 9, Software Engineering
Management. The lowest level is the tech-
nical processes; the second is the technical
management level, which will include project
management processes. lhe third level is
the (executive) management level, focused
on organizational enabling processes, such
as knowledge management, life cycle model
management, or portfolio management.

2.8. Software Life Cycle Adaptation
(5] [14] [23][29]

Each software system has its differential char-
acteristics. These differential characteristics,
together with the stakeholders’ needs, lead to
specific life cycles. This adaptation will include
identifying all the relevant characteristics,
selecting the appropriate standards or docu-
ments internal to an organization, selecting a
development strategy/life cycle model, stages,
and processes, and documenting the decisions
and rationale. The adaptation will not require
keeping the names provided in Section 2,
or including them all [5, 14, 23]. The ISO/
IEC 29110 series, Systems and Software
Engineering Standards and Guides for Very

Small Entities (VSEs) [29], is an example of
a series derived from ISO/IEC/IEEE 12207.
2.9. Practical Considerations [8*,c2-3]
Defining a life cycle process includes the spec-
ification of the four categories presented in
Section 2. This means addressing technical
processes (definition of the processes that will
be required), organizational processes (this
includes human resources, among other pro-
cesses), technical management processes (how
processes are related, how they are monitored
and managed), and agreement processes.

The discipline of software engineering has
been evolving since its conception for several
reasons. 'The community has never stopped
learning, while the complexity of the prod-
ucts has been ever-increasing. Defining a
software life cycle for the development of a
product requires considering the characteris-
tics of the product (e.g., stakeholders’ needs,
product size or complexity) and others external
to the product, such as the stakeholders’ char-
acteristics. Something that the community has
learned is that estimations and measurements
are essential. Wrong or uncertain estimations
in the context of a life cycle will lead to failure.
Accurate estimations are not easy to produce. [8]

A current trend in software engineering
is a focus on continuous delivery, supported
by realistic process and product estimations
and measurements. A helpful lesson engi-
neers have learned is that working with large
processes without producing any delivera-
bles along the way increases uncertainty. (See
DevOps in Section 2.5.) The Agile mindset
has contributed to this and has helped engi-
neers recognize the importance of communi-
cation in the process. [8]

When a project process is defined in con-
formity with a life cycle, it is important to
make sure that it will be possible to have met-
rics/measure definitions that will result in
realistic process (and product) estimations and
measurements throughout project definition
and execution, and to define the level of pre-
cision and uncertainty; project process (and
product) measurements should always provide



accurate information about what is happening
(the status of the process and the product)
while the life cycle process is executed. If the
accuracy of estimations and measurements is
uncertain, the project might not be successtul.
In this case, a reflection should take place
on the overall approach. Historically, a lot of
polemics have grown about the predictive life
cycle versus the Agile life cycle. In software
engineering, discussions should always be sup-
ported by realistic process and product estima-
tions and measurements, which can accurately
reduce the level of uncertainty.

2.10. Software Process Infrastructure, Tools,
Methods [3*,c2][8*,c2-3][2]

Several notations have been used for defining
software processes, including natural language,
specifying textual lists of constituent activi-
ties and tasks, data-flow diagrams, state charts,
integration definition (IDEFO0) [30], Petri nets,
unified modeling language (UML) activity dia-
grams, and business process model and notation
(BPMN) [2, 3]. Software process infrastructure
includes tools to support the definition of these
processes (e.g., a BPMN toolkit) but mainly to
support all specific processes (testing or con-
figuration management). Process definitions
will often include methods and formalism (e.g.,
Rational Unified Process or extreme program-
ming) [3]. Tools will, ideally, have to support
these methods and, as important, be integrated
with them. Therefore, it is not enough that a
tool supports testing. Once a code unit has been
successfully tested, for example, this becomes
useful information that should be recorded so
that the rest of the team can be aware of this
fact. This means that the configuration man-
agement tool and the testing tool will have to be
integrated [3, 8]. The term software engineering
environment, representing a set of integrated
tools, is sometimes used. The term CASE (com-
puter-aided software engineering) was popular
in the 1980s and 1990s. Somehow, the power
tools of the 1980s and 1990s were oversold as a
cure for the software crisis. In any case, today,
the automation of some processes (e.g., config-
uration management, or at least version control;
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testing; ticket management) is seen as essential
for the implementation of successful life cycles.
See also the KA 11, Software Engineering
Models and Methods.

2.11. Software Engineering Process Monitoring
and its Relationship with the Software
Product [1,c5-6][3*c2][4*c4-10]

[8*c2-3]

Developers must monitor the software engi-
neering process execution, assess whether the
process objectives are met, and assess risks.
This process monitoring is part of software
engineering process assessment (see Section
3) and part of the Software Engineering
Management KA [1, 3, 4, 8].

Empirical methods support process assess-
ment and improvement as well as product
assessment and improvement. The goal of pro-
cess execution is to obtain products that meet
stakeholders’ needs. While this area is focused
on the software engineering process, process
monitoring requires assessing both process and
product, using a joint, more holistic approach.

3. Software Process Assessment and
Improvement

3.1. Owverview of Software Process Assessment

and Improvement [4*,c4][15][24]
The idea that any executed process can be
improved was present in the classic Shewhart-
Deming plan-do-check-act (PDCA) par-
adigm [15, 24], which was already being
discussed and applied in the 1950s, and its
foundations can be found centuries earlier.
For the software engineering process, several
approaches have been developed.

The PDCA paradigm is an opportunity to
meet a widely recognized need — the need
for empirical evidence to make decisions.
Such decisions include choosing a life cycle,
deciding how to assess a process or deciding
how to improve a process, among others.
Getting empirical evidence across the execu-
tion of a software engineering process is essen-
tial for the success of the process execution. [4]
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3.2. Goal Question Metric (GOM) [21]
The GQM approach [21] is based on Basili’s
Quality Improvement Paradigm. Both are
based on setting goals that can be measured,
changing something, and then evaluating the
effect of the change. When the evaluation is
positive, an improvement has occurred.

3.3 Framework-Based Methods
[4*,c4-10][6][22]

Some assessment methods are based on frame-
works that use a process reference model and
an assessment reference model — for example,
CMME (capability maturity model), CMMI®
[4, 22], and the ISO/IEC 33000 [4, 6] series,
also known as SPICE.

The ISO/IEC 33000 framework includes
a process reference framework and a pro-
cess assessment model. The ISO/IEC 33000
framework revises the ISO/IEC 15504 series
of International Standards, providing a
framework for the assessment of (1) the pro-
cess quality characteristics, one of which is
process capability, together with (2) organi-
zational maturity. This framework covers pro-
cesses for the development, maintenance and
use of systems across the information tech-
nology domain, as well as processes for the
design, transition, delivery and improvement
of services. The concept of seeking continuous
improvement underlies the assessment.

This series has developed several groups of
standards addressing, as well as core elements,

basic requirements for performing process
assessments, process models and the process
measurement framework; guidance on how
to perform assessments; measurement frame-
works for the assessment of process capability
and organizational maturity; process refer-
ence models for special cases such as safety or
high maturity; process assessment models for
SLCPs, system life cycle process I'T service
management, safety and high maturity; and
organizational maturity models.

The process reference model is defined as a
“model comprising definitions of processes in
a domain of application described in terms of
process purpose and outcomes, together with
an architecture describing the relationships
between the processes.” The process assess-
ment model is defined as a “model suitable for
the purpose of assessing a specified process
quality characteristic, based on one or more
process reference models.” [6]

3.4. Process Assessment and Improvement

in Agile [9%,c11][28]
Agile methods (e.g., the scrum project man-
agement method) introduce what they call
retrospectives at the end of each iteration. The
objective of the retrospective is to analyze
what went well and what did not go well, to
understand why, and to set a number of actions
for learning and improvement. In the end, the
team is in a continuous learning loop [9]. This
practice, with different names and scopes was
not new in software engineering [28].
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CHAPTER T

Software Engineering Models

and Methods

ACRONYMS
3GL 3rd Generation Language
BNF Backus-Naur Form
FDD Feature-Driven Development
IDE Integrated Development
Environment
RAD Rapid Application Development
UML | Unified Modeling Language
XP eXtreme Programming
INTRODUCTION

Software engineering models and methods
impose structure on software engineering
to make it systematic, repeatable and ulti-
mately more success-oriented. Models
provide an approach to problem-solving,
a notation and procedures for model con-
struction and analysis. Methods provide an
approach to the systematic specification,
design, construction, testing and verifica-
tion of the end-item software and associ-
ated work products.

Software engineering models and methods
vary widely in scope — from addressing a
single software life cycle phase to covering the
complete software life cycle. This knowledge
area (KA) focuses on models and methods
that encompass multiple software life cycle
phases regardless of the type of life cycle pro-
cess models such as iterative models and agile
ones, since other KAs cover methods specific
to single life cycle phases.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
MODELS AND METHODS

This chapter on software engineering models
and methods is divided into four main
topic areas:

1. Modeling discusses the general practice of
modeling and presents topics in modeling
principles, properties and expression of
models, modeling syntax, semantics,
and pragmatics, as well as preconditions,
postconditions, and invariants.

2. Dypes of Models briefly discusses models
and aggregation of submodels and pro-
vides general characteristics of model
types commonly found in the software
engineering practice.

3. Analysis of Models presents common anal-
ysis techniques used in modeling to verify
completeness, consistency, correctness,
traceability and interaction.

4.  Software Engineering Methods presents
a summary of commonly used software
engineering methods, such as heuristic
methods, formal methods, prototyping
and Agile methods.

'The breakdown of topics for the Software
Engineering Models and Methods KA is
shown in Figure 11.1.

1. Modeling

Modeling of software is a pervasive technique
to help software engineers understand, engi-
neer and communicate aspects of the software
to appropriate stakeholders. Stakeholders are
those people or parties with a stated or implied

11-1
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Figure 11.1. Breakdown of Topics for the Software Engineering Models and Methods KA

interest in the software (e.g., users, buyers,
suppliers, architects, certifying authorities,
evaluators, developers, software engineers).

Although there are many modeling lan-
guages, notations, techniques and tools in
the literature and in practice, some general,
unifying concepts apply to them all. The fol-
lowing sections provide background on these
general concepts.

1.1. Modeling Principles
[1* c2s2, c5s1, c5s2, 2% c2s2, 3%, c550]

Modeling provides the software engineer
with an organized and systematic approach
for representing significant aspects of the
software under study, facilitating deci-
sion-making about the software or elements,
and communicating those significant deci-
sions to others in the stakeholder commu-
nities. Three general principles guide such
modeling activities:

« Model the essentials: Good models do not
represent every aspect or feature of the
software under every possible condition.
Modeling involves only those aspects

or features that pose specific questions,
abstracting away any nonessential infor-
mation. 'This approach keeps models
manageable and useful.

Provide perspective: Modeling provides
views of the software under study using
defined rules for expressing the model
within each view. This perspective-driven
approach provides dimensionality to the
model (e.g., providing a structural view,
a behavioral view, a temporal view, an
organizational view and/or other views
if relevant). Organizing information into
views focuses the software modeling
efforts on specific concerns relevant to
that view using the appropriate notation,
vocabulary, methods and tools.

Enable effective communications: Modeling
uses the application domain vocabulary
of the software, a modeling language
and semantic expression (in other words,
meaning within context). When used
rigorously and systematically, mod-
eling results in a reporting approach
that facilitates effective communica-
tion of software information to project
stakeholders.
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A model is an abstraction or simplification
of a system. A consequence of using abstrac-
tion is that, because no single abstraction
completely describes a software component,
the software model comprises an aggregation
of abstractions, which, when taken together,
describe selected aspects, perspectives or
views — only those that are needed to make
informed decisions and respond to the reasons
for creating the model in the first place. This
simplification points to assumptions about the
context within which the model is placed that
should also be captured in the model. Then,
when the model is reused, these assumptions
can be validated first to establish the rele-
vancy of the reused model within its new use
and context.

1.2. Properties and Expression of Models
[17%, 582, c553, 3%, c4s1.1p7, c4s6p3,
c5s0p3]

Properties of models are those distinguishing
features of a particular model that charac-
terize its completeness, consistency and cor-
rectness within the chosen modeling notation
and tooling. Properties of models include the
following:

* Completeness — the degree to which all
requirements have been implemented and
verified within the model

+ Consistency — the degree to which the
model contains no conflicting require-
ments, assertions, constraints, functions
or component descriptions

 Correctness — the degree to which the
model satisfies its requirements and
design specifications and is free of defects

Models are constructed to represent objects
needed for target domains and their behaviors
to answer specific questions about how the
software is expected to operate. Interrogating
the models — through exploration, simula-
tion or review — might expose areas of uncer-
tainty within the model and the software to
which the model refers. These uncertain-
ties or unanswered questions regarding the

requirements, design and/or implementation
can then be handled appropriately.

The primary expression element of a model
is an entity. An entity may represent concrete
artifacts (e.g., processors, sensors or robots)
or abstract artifacts (e.g., software modules
or communication protocols). Model entities
are connected to other entities using relations
(lines or textual operators on target entities).
Expression of model entities may be accom-
plished using textual or graphical modeling
languages; both modeling language types con-
nect model entities through specific language
constructs. The meaning of an entity may
be represented by its shape, its textual attri-
butes or both. Generally, textual information
adheres to language-specific syntactic struc-
ture. The precise meanings related to the mod-
eling of context, structure or behavior using
these entities and relations are dependent on
the modeling language used, the design rigor
applied to the modeling effort, the specific
view being constructed and the entity to which
the specific notation element may be attached.
Multiple views of the model may be required to
capture the needed semantics of the software.

When using automation-supported models,
models may be checked for completeness and
consistency. The usefulness of these checks
depends greatly on the level of semantic and
syntactic rigor applied to the modeling effort
and on explicit tool support. Correctness can
be checked through model simulation, execu-
tion or review.

1.3. Syntax, Semantics, and Pragmatics
[27, ¢252.2.2p6, 3%, c550]

Models can be surprisingly deceptive. The fact
that a model is an abstraction with missing
information can give people the illusion that
they completely understand the software after
studying a single model. A complete model
(“complete” being relative to the modeling
effort) may be a union of multiple submodels
and any special function models. Examination
of and decision-making regarding a single
model within this collection of submodels
may be problematic.
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Understanding the precise meanings of
modeling constructs can also be difficult.
Syntactic and semantic rules define modeling
languages. For textual languages, syntax is
defined using a notation grammar that defines
valid language constructs (e.g., Backus-Naur
form (BNF)). For graphical languages, syntax
is defined using graphical models called meza-
models. As with BNF, metamodels define a
graphical modeling language’s valid syntac-
tical constructs. In addition, the metamodel
defines how these constructs can be composed
to produce valid models.

Semantics for modeling languages specify
the meaning attached to the entities and
relations captured within the model. For
example, a simple diagram of two boxes con-
nected by a line is open to various interpre-
tations. Knowing that the diagram on which
the boxes are placed and connected is an
object diagram or an activity diagram assists
in interpreting this model.

As a practical matter, the semantics of
a specific software model are usually fairly
clear due to the model’s use of a modeling
language, the way that modeling language
expresses entities and relations within that
model, the experience and skill of the mod-
elers, and the context within which the mod-
eling has been undertaken and represented.
Meaning is communicated through the model
even in the presence of incomplete informa-
tion through abstraction. Pragmatics explains
how meaning is embodied in the model and
its context and how it is communicated effec-
tively to other software engineers.

However, there are still instances where
caution is needed regarding modeling and
semantics. For example, any model parts
imported from another model or library must
be examined for semantic assumptions that
conflict with the new modeling environ-
ment; these conflicts might not be obvious.
The model should be checked for documented
assumptions. Although the imported mod-
eling syntax might be the same, it might mean
something quite different in the new environ-
ment, which is a different context. Also, con-
sider that as software matures and changes

are made, semantic discord can be intro-
duced, leading to errors. With many soft-
ware engineers working on part of a model
over time, and with tool updates and perhaps
new requirements, it is poosible for portions
of the model to represent something different
from the original author’s intent and initial
model context.

1.4. Preconditions, Postconditions, and Invariants

[27%, c4s4, 4%, c10s4p2, c10s5p2p4]

When modeling functions or methods,
the software engineer typically starts with
assumptions about the software’s state before,
during and after the function or method exe-
cutes. These assumptions are essential to the
correct operation of the function or method
and are grouped, for discussion, as a set of
preconditions, postconditions and invariants.

« Preconditions are conditions that must be
satisfied before execution of the function
or method. If these preconditions do not
hold before execution of the function or
method, the function or method might
produce erroneous results.

* Postconditions are conditions guaranteed
to be true after the function or method
has executed successfully. Typically, the
postconditions represent how the soft-
ware’s state has changed, how parameters
passed to the function or method have
changed, how data values have changed,
or how the return value has been affected.

* Invariants are conditions within the oper-
ational environment that persist (in other
words, do not change) before and after
execution of the function or method.
These invariants are relevant and neces-
sary to the software and to the correct
operation of the function or method.

2. Types of Models

A typical model consists of an aggregation
of submodels. Each submodel is a partial
description and is created for a specific pur-
pose. A submodel may comprise one or more
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diagrams. The collection of submodels may
use multiple modeling languages or a single
modeling language. The unified modeling
language (UML) recognizes a rich collec-
tion of modeling diagrams. These diagrams,
along with the modeling language constructs,
are used in two common model types: struc-
tural models and behavioral models. (See
Section 1.1.) Depending on modeling lan-
guages, there can be other types of models.
For instance, the systems modeling language
(SysML) provides two other types of models:

requirements models and parametric models.

2.1. Structural Modeling
[1*, ¢7s2.2,¢752.5,c7s3.1, c7s3.2, 3%, c55s3,
c8s1, 4% c4,17]

Structural models illustrate the software’s
physical or logical composition of software
from its various component parts. Structural
modeling establishes the defined boundary
between the software being implemented or
modeled and the environment in which it is to
operate. Some common structural constructs
used in structural modeling are composition,
decomposition, generalization, and special-
ization of entities; identification of relevant
relations and cardinality between entities; and
the definition of process or functional inter-
faces. Structure diagrams provided by the
UML for structural modeling include class,
component, object, deployment, and pack-
aging diagrams.

Information modeling is a kind of struc-
tural modeling and focuses on data and
other information. An information model is
an abstract representation that identifies and
defines a set of concepts, properties, relations
and constraints on data entities. The semantic
or conceptual information model is often used
to provide some formalism and context to the
software as viewed from the problem perspec-
tive, without concern for how this model is
mapped to the implementation of the software.
The semantic or conceptual information model
is an abstraction and, as such, includes only the
concepts, properties, relations and constraints
needed to conceptualize a real-world view of

the information. Subsequent transformations
of the semantic or conceptual information
model become logical and then physical data
models as implemented in the software.

2.2. Behavioral Modeling
[1* ¢7s2.1,c752.3,c7s2.4, 2%, c9s2, 3%,
c5s4, 8, c1s5.4]

Behavioral models identify and define soft-
ware functions. Behavioral models generally
take three basic forms: state machines, con-
trol-flow models and data-flow models. State
machines provide a model that represents
the software as a collection of defined states,
events and transitions. The software tran-
sitions from one state to the next through a
guarded or unguarded triggering event that
occurs in the modeled environment. Control-
flow models depict how a sequence of events
causes processes to be activated or deacti-
vated. Data-flow models represent data-flow
behavior as a sequence of steps where data
moves through processes toward data stores
or data sinks. These models are described in
the way of event-triggered, time concepts
(i-e., logical, physical, discrete, continuous,
relative, or absolute time), or combinations
thereof. Behavioral diagrams provided by the
UML for behavioral modeling include use
case, activity, state machine, and interaction
(sequence, communication, timing, and inter-
action overview) diagrams.

3. Analysis of Models

The development of models allows the soft-
ware engineer to study, reason about and
understand software structure, function,
operational use and assembly considerations.
Analysis of constructed models is needed to
ensure that the models are complete, con-
sistent and correct enough to serve their
intended purpose for the stakeholders.

The following sections briefly describe the
analysis techniques generally used to ensure
that the software engineer and other relevant
stakeholders gain appropriate value from the
development and use of models.



11-6 SWEBOK?® GUIDE V4.0a

3.1. Analyzing for Completeness
[3*, c4sl.1p7, c4s6, 5*, pp8-11]

To ensure software fully meets the needs of
the stakeholders, completeness — from the
requirements elicitation process to code imple-
mentation — is critical. Completeness is the
degree to which all specified requirements have
been implemented and verified. Engineers can
check models for completeness with a modeling
tool that uses structural analysis and state-
space reachability analysis (which ensure some
set of correct inputs reach all paths in the state
models). Models may also be checked manually
for completeness by using inspections or other
review techniques. (See the Software Quality
KA.) Errors and warnings generated by these
analysis tools and found by inspection or review
indicate that corrective actions are probably
needed to ensure model completeness.

3.2. Analyzing for Consistency
[3%, c4s1.1p7, c4s6, 5%, pp8-11]

Consistency is the degree to which models
contain no conflicting requirements, asser-
tions, constraints, functions or component
descriptions. Typically, consistency checking
is accomplished with the modeling tool using
an automated analysis function. Models may
also be checked manually for consistency
using inspections or other review techniques.
(See the Software Quality KA.) As with com-
pleteness, errors and warnings generated by
these analysis tools and found by inspection or
review indicate the need for corrective action.
3.3. Analyzing for Correctness  [5%, pp8-11]
Correctness is the degree to which a model
satisfies its software requirements and soft-
ware design specifications, is free of defects,
and ultimately meets the stakeholders’ needs.
Analyzing for correctness includes verifying
the model’s syntactic correctness (that is, cor-
rect use of the modeling language grammar
and constructs) and semantic correctness (that
is, use of the modeling language constructs to
correctly represent the meaning of that which

is being modeled). To analyze a model for syn-
tactic and semantic correctness, one analyzes it
— either automatically (e.g., using a modeling
tool to check for model syntactic correctness)
or manually (using inspections or other review
techniques) — searching for possible defects
and then removing or repairing the confirmed
defects before the software is released for use.

3.4. Analyzing for Traceability
[3*, c4s7.1, c4s7.2]

Developing software typically involves using,
creating and modifying many work products
such as planning documents, process specifica-
tions, software requirements, diagrams, designs
and pseudo-code, handwritten and tool-gen-
erated code, manual and automated test cases
and reports, and files and data. These work
products may share various dependency rela-
tionships (e.g., uses, implements and tests). As
software is developed, managed, maintained or
extended, these traceability relationships must
be mapped and controlled to demonstrate the
software requirements’ consistency with the
software model (see Requirements Tracing in
the Software Requirements KA) and the many
work products. Use of traceability typically
improves the management of software work
products and software process quality and
assures stakeholders that all requirements are
satisfied. Traceability enables change analysis
once the software is developed and released
because relationships to software work prod-
ucts can easily be traversed to assess change
impact. Modeling tools typically help automat-
ically or manually specify and manage trace-
ability links among requirements, design, code
and/or test entities that might be represented in
the models and other software work products.
(For more information on traceability, see the
Software Configuration Management KA.)

3.5. Analyzing for Interaction
[2* ¢10, c11, 3%, c29s1.1, c29s5, 4*, c5]

Interaction analysis focuses on the communica-
tions or control-flow relations between entities
used to accomplish a specific task or function
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within the software model. This analysis
examines the dynamic behavior of the inter-
actions among the software model’s different
parts, including other software layers (such as
the operating system, middleware and appli-
cations). Examining interactions between the
computer software application and the user
interface software is also important for some
software applications. Some software mod-
eling environments provide simulation facili-
ties to study aspects of the dynamic behavior
of modeled software. Stepping through the
simulation allows the software engineer to
review the interaction design and verify that
the software’s different parts work together to
provide the intended functions.

4. Software Engineering Methods

Software engineering methods provide an
organized and systematic approach to devel-
oping software for a target computer. There
are numerous methods from which to choose,
and the software engineer needs to choose an
appropriate method or methods for the soft-
ware development task at hand. This choice
can dramatically affect the success of the
project. When software engineers, working
with people who have the right skill sets and
the right tools, use these software engineering
methods, they can visualize the software’s
details and ultimately transform the represen-
tation into a working set of code and data.

Selected software engineering methods
are discussed below. The topic areas are orga-
nized into discussions of Heuristic Methods,
Formal Methods, Prototyping Methods and
Agile Methods.

4.1. Heuristic Methods  [1%, c13,c15,c16, 3%
€2s2.2,¢c7s1, c5, 8, pp.xiii-xvii 9,c2s2,11,
¢1,12, cls1, 19, pp.220-242]

Heuristic methods are experience-based soft-
ware engineering methods, which are fairly
widely practiced in the software industry. This
topic area contains five broad discussion cate-
gories: structured analysis and design methods,
data modeling methods, object-oriented

analysis and design methods, aspect-oriented
development methods, and model-driven and
model-based development methods.

* Structured analysis and design methods:
These methods develop the software
model primarily from a functional or
behavioral viewpoint. They start from a
high-level view of the software (including
data and control elements). It then pro-
gressively decomposes or refines the
model components through increasingly
detailed designs. The detailed designs
eventually converge to specific software
details or specifications that must be
coded (by hand, automatically generated
or both), built, tested and verified.

* Data modeling methods: The data model
is constructed from the viewpoint of the
data or information used. Data tables and
relationships define the data models. This
data modeling method is used primarily
to define and analyze data requirements
supporting database designs or data
repositories typically found in business
software, where data is actively managed
as a business systems resource or asset.

* Object-oriented analysis and design methods:
'The object-oriented model is represented as
a collection of objects that encapsulate data
and relationships and interact with other
objects through methods. Objects may be
real-world items or virtual items. These
methods build models using diagrams to
constitute selected views of the software.
Progressive refinement of the models leads
to a detailed design. The detailed design
is then either evolved through succes-
sive iterations or transformed (using some
mechanism) into the implementation view
of the model, where the code and pack-
aging for eventual software product release
and deployment are expressed. Popular
object-oriented approaches include Unified
Process (UP) and specific implementations
of UP, such as Rational Unified Process
(RUP). (See the section Model-Based
Requirements in the Software Design KA
and Software Requirements KA.)
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« Aspect-Oriented Development Methods: The
aspect-oriented approach aims to separate
crosscutting concerns from non-crosscut-
ting ones in the system and keeps them
encapsulated throughout the entire life
cycle to solve their scattering and tangling
problem. Aspect is the unit of modularity
to encapsulate crosscutting concerns. At
the software level, there is a “weaver”
that is in charge of joining the portions
of functionality (advices) encapsulated
in the incumbencies at certain points of
base behavior (join points), according to
well-defined predicates (pointcuts).

* Model-Driven and Model-Based
Development Methods: Model-Driven
Development (MDD) is an approach
using models as primary artifacts of the
development process. In MDD, usually
the implementation or other models are
(semi)automatically transformed from
the models. Model-Based Development
(MBD) uses models to analyze the system,
where models are not necessarily the pri-
mary artifacts. Some literature refers to
MBD as the acronym for Model-Based
Design. Model-Based Design is a mod-
el-centric approach to developing con-
trol, signal processing, communications,
and other dynamic systems, focusing on
executable specification and simulation.
See the Software Design KA. Model-
Driven Requirements and Model-Based
Requirements apply the same mentality
to specification of software require-
ments, see the Software Requirements
KA. MDD/MBD is a prerequisite to
Model-Based Architecture, see the
Software Architecture KA. Sometimes,
test cases are generated from models, see
the Software Testing KA.

4.2. Formal Methods
[1% ¢18, 3%, c27, 5%, pp8-24, 10, pp.xi-xiv]

Formal methods are software engineering
methods that apply rigorous, mathemati-
cally based notation and language to specify,
develop and verify the software. Through

use of a specification language, the software
model can be systematically checked for con-
sistency (or lack of ambiguity), complete-
ness, and correctness, either automatically
or semiautomatically. This topic is related to
the Formal Analysis section in the Software
Requirements KA.

This section addresses specification lan-
guages, program refinement and derivation,
formal verification, logical inference, and
lightweight formal methods.

* Specification languages: Specification lan-
guages provide the mathematical basis
for a formal method. Specification lan-
guages are formal, higher-level computer
languages (not a classic 3rd-generation
language (3GL) programming language)
used during the software specification,
requirements analysis and/or design stages
to describe specific input/output behavior.
Specification languages are not directly
executable languages. Instead, they typ-
ically comprise a notation and syntax,
semantics for the use of the notation, and
a set of allowed relations for objects.

* Program  refinement
Program refinement creates a lower-level
(or more detailed) specification using a
series of transformations. Through suc-
cessive transformations, the software
engineer derives an executable represen-
tation of a program. Specifications may
be refined, adding details until the model
can be formulated in a 3GL program-
ming language or in an executable por-
tion of the chosen specification language.
This specification refinement is made
possible by defining specifications with
precise semantic properties. For example,
the specifications must set out not only
the relationships between entities but
also the exact runtime meanings of those
relationships and operations.

« Formal wverification: Model checking is a
formal verification method. It typically
involves performing a state-space explo-
ration or reachability analysis to demon-
strate that the represented software design

and  derivation:
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has or preserves certain model properties
of interest. An example of model checking
is an analysis that verifies correct program
behavior under all possible interleaving of
event or message arrivals. Formal verifica-
tion requires a rigorously specified model
of the software and its operational envi-
ronment. This model often takes the form
of a finite-state machine or other formally
defined automaton.

* Logical inféerence: Logical inference is a
method of designing software that spec-
ifies preconditions and postconditions
around each significant design block.
Using mathematical logic, it develops the
proof that those preconditions and post-
conditions must hold under all inputs.
This allows the software engineer to pre-
dict software behavior without having
to execute the software. Some inte-
grated development environments (IDEs)
include ways to represent these proofs and
the design or code.

* Lightweight Formal Methods: Lightweight
formal methods are lightweight
approaches that balance practical
usability and rigorous verification. For
instance, Alloy takes from formal specifi-
cation the idea of a precise and expressive
notation based on a tiny core of simple and
robust concepts, but it replaces conven-
tional analysis based on theorem proving
with a fully automatic analysis that gives
immediate feedback. Unlike theorem
proving, this analysis is not “complete” it
examines only a finite space of cases.

4.3. Prototyping Methods
[1% c12s2, 3% ¢2s3.1, 6%, c7s3p5]

Software prototyping is an activity that gen-
erally creates incomplete or minimally func-
tional versions of a software application,
usually for trying out specific new features;
soliciting feedback on software requirements
or user interfaces; further exploring software
requirements, software design, or imple-
mentation options; or gaining some other
useful insight into the software. The software

engineer selects a prototyping method to
first understand the least understood soft-
ware aspects or components. This approach
contrasts with other software engineering
methods that usually begin development with
the best-understood portions first. Typically,
the prototype does not become the final soft-
ware product without extensive development
rework or refactoring.

This section briefly discusses prototyping
styles, targets and evaluation techniques.

* Prototyping style:  Prototyping styles
describe the various approaches to devel-
oping prototypes. A prototype can be
developed as throwaway code or a paper
product, as an evolution of a working
design, or as an executable specification.
Different prototyping life cycle processes
are typically used for each style. The style
chosen is based on the type of results the
project needs, the quality of the results
needed and the results’ urgency.

* Prototyping target: The prototyping target
is the specific product served by the pro-
totyping effort. Examples of prototyping
targets are a requirements specification,
an architectural design element or com-
ponent, an algorithm, and a human-ma-
chine user interface.

* Prototyping evaluation techniques: 'The
software engineer or other project stake-
holders may use or evaluate the prototype
in many ways, driven primarily by the
underlying reasons that led to prototype
development. Prototypes may be evalu-
ated or tested against the implemented
software or target requirements (e.g., a
requirements prototype). The prototype
might also serve as a model for future
software development (e.g., as in a user
interface specification).

4.4. Agile Methods
[3*, c3, 6*, c7s3p7, 7*, c6, App. A,
13, 14, 15, 16, 18]

Agile methods were developed in the 1990s to
reduce the apparent large overhead associated
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with heavyweight, plan-based methods used
in large-scale software development projects.
Agile methods are considered lightweight
because of their short, iterative development
cycles, self-organizing teams, simpler designs,
code refactoring, test-driven development,
frequent customer involvement and emphasis
on creating a demonstrable working product
with each development cycle. Agile methods
can be seen as an application of the Deming
improvement cycle of Plan-Do-Check-Act
(PDCA) to software engineering. For
example, EVO, which is one of the earliest
agile methods, is known as a practical way to
implement the PDCA cycle incrementally.
Many Agile methods are available in the lit-
erature. Some more popular approaches, dis-
cussed here briefly, include rapid application
development (RAD), eXtreme programming
(XP), Scrum, feature-driven development
(FDD), and Lean software development.

* RAD: RAD methods are used primarily
in data-intensive business systems appli-
cation development. RAD is enabled
by special-purpose database develop-
ment tools used by software engineers to
quickly develop, test and deploy new or
modified business applications.

« XP: 'This approach uses stories or sce-
narios for requirements, develops tests
first, has direct customer involvement on
the team (typically defining acceptance
tests), uses pair programming, and pro-
vides continuous code refactoring and
integration. Stories are decomposed into
tasks, prioritized, estimated, developed
and tested. Each software increment is
tested with automated and manual tests.
An increment may be released frequently,
such as every couple of weeks.

« Scrum: 'This Agile approach is more
project management-friendly than the
others. The Scrum master manages the
activities within the project increment.
Each increment is called a sprins and lasts
no more than 30 days. The product owner
determines which items go into the
product backlog and develops a product

backlog item list. The tasks from this list
are identified, defined, prioritized and
estimated. A working version of the soft-
ware is tested and released in each incre-
ment. Daily Scrum meetings ensure work
is managed according to the plan.

« FDD: This is a model-driven, short, iter-
ative software development approach
using a five-phase process: (1) develop a
product model to scope the breadth of
the domain, (2) create the list of needs
or features, (3) build the feature develop-
ment plan, (4) develop designs for itera-
tion-specific features, and (5) code, test,
and then integrate the features. FDD is
similar to an incremental software devel-
opment approach. It is similar to XP,
except that code ownership is assigned
to individuals rather than to the team.
In addition, FDD emphasizes an overall
architectural approach to the software,
which promotes building features cor-
rectly the first time rather than rely on
continual refactoring.

* Lean: This is an application of lean man-
ufacturing principles adapted from the
Toyota Production System to software
development. The approach adopts the
strategy of making a Minimum Viable
Product, in which a team releases the
simplest version of its product. The team
learns feedback from users and iterates
based on the feedback. The concept of
Lean is to optimize the entire develop-
ment process, rather than optimizing the
individual development process. By over-
looking the entire value flow, including
design, manufacturing, sales, and ser-
vice delivery, this approach optimizes the
flow to quickly deliver the service to users.
Kanban is also a lightweight process that
applies many ideas of the Lean process.
However, there are some fundamental dif-
ferences because Kanban supports man-
aging workflow and visualization.

There are many more variations of Agile
methods in the literature and in practice.
There will always be a place for heavyweight,



SOFTWARE ENGINEERING MODELS AND METHODS 11-11

plan-based software engineering methods as
well as places where Agile methods shine. In
addition, new methods are arising from com-
binations of Agile and plan-based methods:
Practitioners are defining these new methods
to balance features from heavyweight and
lightweight methods based primarily on
organizational business needs. These busi-
ness needs, as typically identified by project
stakeholders, should and do drive the choice
of software engineering method.

Large-scale and enterprise agile approaches
reflect recent efforts to manage many agile
teams and apply agile principles and practices
across the enterprise while keeping promises
of agile development methodologies (see agile
models in Software Engineering Process KA).

Agile methodology leads to shorter release
cycles. Then, release engineering contributes a

lightweight release cycle. Release engineering
is a sub-discipline in software engineering
concerned with the compilation, assembly,
and delivery of source code into finished prod-
ucts or other software components. The trend
cycle in Agile would be Integration, Building,
and Testing that Release Engineering focuses
on. DevOps is often conflated with agile
and continuous deployment approaches of
software development. To avoid conflating,
release management acts as a method for
filling the collaboration gap between devel-
opment and operations. Release managers
need to monitor the development process and
the promotion schedule for each release. The
key to managing software releases in DevOps
that keeps pace with deployment schedules is
through automated management tools such as
a continuous integration (CI) system.

MATRIX OF TOPICS VS. REFERENCE MATERIAL

3
=3
S
Q
-~
g2
<5
— <8 -
) 5| =
= — B=| g
S A — < <
N = % 2 3 -
- © =X > S 7}
— 3] R a & =]
— - K =3 —_— 23 o
= = Q N 5 S .9 =
b M 9 = In, VA =
=) la=] =] @ o ® o=}
QN g z o X 0 o g
c s 3 g S < B s
3 3 g & £ | 2§ 3
= = & < 2 | m0 | =
1. Modeling
1.1. Modeling c3s3, c3s5, c2s2 c5s0
Principles c4s2, c7s1,
c7s2
1.2. Properties c7s2, c7s3 c4s1.1p7,
and Expression c4s6p3,
of Models c5s0p3
1.3. Syntax, €252.2.2p6 | c5s0
Semantics and
Pragmatics
1.4. Preconditions, cds4 c10s4p2,
Postconditions and c10s5p2p4
Invariants




11-12 SWEBOK® GUIDE V4.0a

[1*] D. Budgen, Software Design: Creating
Solutions for Ill-Structured Problems, 3rd

Edition, CRC Press, 2021.

[2*] S.J. Mellor and M.]. Balcer, Executable

UML: A Foundation for Model-Driven

Architecture, 1st ed. Addison-Wesley, 2002.

[3*] I. Sommerville, Software Engineering,
10th ed. Addison-Wesley, 2016.

[4*] M. Page-Jones, Fundamentals of Object-

Oriented Design in UML, 1st ed.
Addison-Wesley, 1999.

2. Types of

Models

2.1. Structural ¢9s5, c10s5 c8s1, c5s3 c4

Modeling

2.2. Behavioral c9s3, c10s6 c9s2 c5s4

Modeling

3. Analysis

of Models

3.1. Analyzing for c4s1.1p7, pp8-11

Completeness c4s6

3.2. Analyzing for c4s1.1p7, pp8-11

Consistency c4s6

3.3. Analyzing for pp8-11

Correctness

3.4. Traceability c4s7.1, c4s7.2

3.5. Interaction c10, c11 c29s1.1, c5

Analysis c29s5

4. Software

Engineering

Methods

4.1. Heuristic cl3 c2s2.2,

Methods c7s1, c5s4.1

4.2. Formal c18s2 c27 pp8-24

Methods

4.3. Prototyping cl4s1, c14s2, c2s3.1 c7s3p5
Methods cl4s3

4.4. Agile c14s5, c14s6 c3 c7s3p7 | c6,
Methods app.

A

REFERENCES [5*] J.M. Wing, “A Specifier’s Introduction

to Formal Methods,” Computer, vol. 23,
pp- 8, 10-23, 1990.

[6¥] ]J.G. Brookshear, Computer Science:
An Overview, 10th ed. Addison-
Wesley, 2008.

[7*] B. Boehm and R. Turner, Balancing
Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley, 2003.

[8] B. Selic and S. Gerard, Modeling and
Analysis of Real-Time and Embedded
Systems with UML and MARTE:
Developing Cyber-Physical Systems,
Morgan Kaufmann, 2013.




SOFTWARE ENGINEERING MODELS AND METHODS 11-13

[9] M. Brambilla, J. Cabot, and M.
Wimmer, Model-Driven Software
Engineering in Practice, Morgan &
Claypool Publishers, 2017.

[10] D. Jackson, Software Abstractions,
revised edition, The MIT Press, 2016.

[11] R. Aarenstrup, Managing Model-Based
Design, CreateSpace Independent
Publishing Platform, 2015.

[12] C. Larman, Applying UML and
Patterns: An Introduction to Object-
oriented Analysis and Design and Iterative
Development, Prentice Hall PTR, 2005.

[13] M. Poppendieck and T. Poppendieck,
Lean Software Development: An
Agile Toolkit, Addison-Wesley
Professional, 2003.

[14] T. Ohno, Tvyota Production System.
Beyond Large-Scale Production, Taylor &
Francis Distribution, 2021.

[15]D.J. Anderson, Kanban: Successful
Ewolutionary Change for Your Technology
Business, Blue Hole Press; 2010.

[16] J. Goodpasture, Project management the
agile way: Making it work in the enter-
prise, ]. Ross Publishing, 2010.

[17] ISO/IEC 19505-1:2012, Information
technology — Object Management
Group Unified Modeling
Language (OMG UML) — Part 1:

Infrastructure.

[18] ISO/IEC/IEEE 32675:2022,
Information technology — DevOps —
Building reliable and secure systems
including application build, package and
deployment.

[19] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J. M. Loingtier,
and J. Irwin, Aspect-oriented pro-
gramming, ECOOP’97, LNCS, Vol.
1241, 1997.



CHAPTER 12

Software Quality

ACRONYMS

CI/CD | Continuous Integration/
Continuous Delivery

CoSQ_ | Cost of Software Quality

COTS | Commercial Off-The-Shelf

FMEA | Failure Mode and Effects Analysis

FTA | Fault Tree Analysis

IV&V | Independent Verification and
Validation

PDCA | Plan-Do-Check-Act

PSP Personal Software Process

QFD | Quality Function Deployment

RCA | Root Cause Analysis

SCM | Software Configuration
Management

SQA Software Quality Assurance

SQAP | Software Quality Assurance Plan

SQC Software Quality Control

SQM | Software Quality Management

V&V | Verification and Validation

INTRODUCTION

What is software quality, and why is it so
important that it is included in many knowl-
edge areas (KAs) of the SWEBOK Guide?
One reason is that the term software quality is
overloaded. Software quality may refer to the
desirable characteristics of software products,
to the extent to which a particular software
product has those characteristics (software
product quality), and to the processes, tools
and techniques used to achieve those charac-
teristics (software process quality). Over the
years, authors and organizations have defined

the term gquality differently. Phil Crosby
defined quality as “conformance to require-
ments” [2]. Watts Humphrey referred to it
as “achieving excellent levels of “fitness for
use” [3]. Meanwhile, IBM coined the phrase
“market-driven quality,” where the “cus-
tomer is the final arbiter” [4]. Finally, fitness
for purpose is also a term that refers to soft-
ware quality. Fitness for purpose is the suit-
ability of a product, system, or service for use
by the intended users, for the intended use, in
the intended situations, and intended environ-
mental conditions.

More recently, software (product) quality
has been defined as the “capability of a soft-
ware product to satisfy stated and implied
needs under specified conditions” [4] and as
“the degree to which a software product meets
established requirements; however, quality
depends upon the degree to which those
established requirements accurately represent
stakeholder needs, wants, and expectations”
[6]. Both definitions embrace the premise of
conformance to requirements. Neither refers
to different types of requirements (require-
ments categorized according to functionality,
reliability, performance, dependability, or any
other characteristic). Significantly, however,
these definitions emphasize that quality is an
important characteristic of requirements.

These definitions also illustrate another
reason for the recurring discussions about soft-
ware quality throughout the SWEBOK Guide
— the often-unclear distinction between
software quality and software quality require-
ments (“the -ilities” is a common shorthand
for these terms). Software quality require-
ments (Quality of Service Constraints in the
Software Requirements KA) are attributes of
(or constraints on) functional requirements

12-1
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Figure 12.1. Breakdown of Topics for Software Quality

(what the system does). Software requirements
may also specify resource use, a communi-
cation protocol, or many other characteris-
tics (Technology Constraints in the Software
Requirements KA). This KA attempts to
clarify requirements by using software quality
in the broadest sense from the definitions
above and by using soffware quality require-
ments as constraints on functional require-
ments. Software product quality is achieved
by conforming to all requirements regard-
less of specified characteristics or grouping or
naming of requirements.

Software quality is also discussed in many
other SWEBOK Guide Knowledge Areas
because it is a basic concept of a software
engineering effort. The primary goal for all
engineered products is to deliver maximum
stakeholder value while balancing the con-
straints of development, maintenance, and
operational cost, sometimes characterized as
fitness for use. Stakeholder value is expressed in
requirements. For software products, stake-
holders could value price (what they pay for
the product), lead time (how fast they get
the product), and quality. (See the Software
Requirements KA for a broader discus-
sion of this.)

The software process quality aspect, which
is implied by the above, must be made explicit.
The quality of a software process can also be

observed in process characteristics such as
efficiency, effectiveness, usability, and learn-
ability. Defects in that process will likely
show up as defects in the resulting software
product, as well.

Finally, the Agile and DevOps movements
aim at improving the software process and
product quality through compliance by pro-
moting quick iteration feedback loops and
eliminating organizational silos by collocating
users and software engineers. Other practices
like pair programming and the automation
of development, testing, and operations ser-
vices also bring value, improve efficiency, and
can detect defects early. (Refer to Software
Engineering Operations KA for more infor-
mation about DevOps and Agile life cycles.)

This KA provides an overview of practices,
tools, and techniques for understanding soft-
ware quality and planning and appraising the
state of software quality during development,
maintenance and operation, from both a soft-
ware product perspective and a software pro-
cess perspective.

BREAKDOWN OF TOPICS FOR
SOFTWARE QUALITY

The breakdown of topics for the Software
Quality KA is presented in Figure 12.1.



1. Software Quality Fundamentals

Agreeing on what constitutes software quality
for all stakeholders and communicating that
agreement to software engineers requires
that the many aspects of quality be formally
defined and communicated. The main chal-
lenges the software engineer faces to ensure
quality include the following:

¢ Diflicultyin clearly defining requirements;

* Maintaining effective communication
with the client/user;

¢ Deviations from specifications;

¢ Architecture and design errors;

* Coding errors;

* Noncompliance with current processes/
procedures;

* Inadequate work product reviews and tests;

* Documentation errors.

Software quality is defined as “The degree
to which a software product meets estab-
lished requirements; however, quality depends
upon the degree to which those established
requirements accurately represent stakeholder
needs, wants, and expectations.” [6]. It is fur-
ther defined “by the degree to which a soft-
ware product meets established requirements;
however, quality depends upon the degree to
which those established requirements accu-
rately represent stakeholder needs, wants, and
expectations” [6]. Quality often means the
absence of defects. The word defect is over-
loaded with too many meanings, as engineers
and others use the word to refer to all different
types of anomalies. However, different engi-
neering cultures and standards often under-
stand “defect” and other terms as having more
specific meanings. To avoid confusion, soft-
ware engineers should use the meaning pro-
vided by their standards [14]:

« Error: “Human action that produces an
incorrect result.” Also called human error;
« Defect: (synonym of a faulf) An “imper-
fection or deficiency in a work product
where that work product does not meet its
requirements or specifications and needs
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to be either repaired or replaced.” A defect
is inserted when a person developing the
software makes an error. It hides in the
software until (and if) it is discovered;

* Failure: The “termination of the ability of
a system to perform a required function
or its inability to perform within previ-
ously specified limits; an externally visible
deviation from the system’s specification.”
A failure is produced when the software
executes a defect.

A software engineer should understand
software quality concepts, characteristics, and
values and their application to the many devel-
opment, maintenance, and operation activi-
ties. The software requirements are expected to
define the required software quality attributes.
Furthermore, software requirements influence
the measurement methods and acceptance cri-
teria for assessing how the software and related
work products achieve the desired quality levels.
Software quality should be planned early and
assessed at many milestones during the soft-
ware life cycle. Finally, how to adapt software
quality assurance (SQA) activities to accom-
modate different life cycles, for example Agile
software development is presented in detail
in the Institute of Electrical and Electronics
Engineers (IEEE) Standard 730:2014 [6].

1.1. Software Engineering Culture and Ethics
[1%, c1s1.6; c2s3] [5%]

An organization’s culture affects how soft-
ware engineers influence software quality.
As Iberle [19] explains, software engineering
practices vary depending on the business
model (e.g., custom, mass-market, commer-
cial, firmware) and the industry where the
software engineers work. Software engineers
are expected to share a commitment to soft-
ware quality in the context of their industry
and as part of their culture. A healthy soft-
ware engineering culture includes many char-
acteristics, such as the understanding that
trade-offs among cost, schedule and quality
are a basic tenet of any product’s engineering.
A strong software engineering ethic assumes
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that engineers accurately report information,
conditions and outcomes related to quality.
Ethics also play a significant role in soft-
ware quality in the professional culture of
engineering, and in the attitudes of software
engineers. The IEEE Computer Society and
the Association for Computing Machinery
(ACM) have developed a code of ethics and
professional practice. (See Codes of Ethics
and Professional Conduct in the Software
Engineering Professional Practice KA.)

1.2. Value and Costs of Quality [1* c2s2]
One major factor driving resistance to imple-
menting SQA is its perceived high cost.
However, not implementing basic SQA activ-
ities can be costly as well. Software engineers
should inform their administration of the risks
they take when they are not fully committed to
quality. This can be done by explaining the cost
of software quality concepts to management.
Cost of software quality (CoSQ) is defined as
the sum of the following project costs:

* Implementation cost of planning and
construction activities (e.g., planning,
designing, development);

* Prevention cost of activities (process
improvement, tools, training);

* Appraisal costs activities for defect detec-
tion (e.g., reviews, audits, testing);

* Nonconformance and rework costs
(internal failure cost and external
failure cost).

The CoSQ_can be broken down into two
top-level categories: conformance cost and non-
conformance cost. Conformance cost is the total
of all investments in error and defect detec-
tion (appraisal) and prevention activities.
Appraisal costs arise from project activities
that are intended to find errors and defects.
These include testing (as detailed in the
Software Testing KA) and reviews and audits
(as detailed later in this KA). Appraisal costs
extend to subcontracted software suppliers, if
any. Prevention costs include investments in
software process improvement (SPI) efforts,

quality infrastructure, quality tools, work
product templates and training. These costs
might not be specific to a project; they often
span the larger organization.

Nonconformance cost is the total of all
spending dealing with errors and defects that
have been detected. Pre-delivery costs are
those incurred to repair errors and defects
found during appraisal activities and discov-
ered before the software product is delivered
to the customer. Post-Delivery costs include
those incurred responding to software fail-
ures discovered after delivery to the customer.
External costs include the rework needed to
repair and test an updated release. External
costs include rework and repair of the unin-
tended and uncompensated side effects or
consequences of defects. However, the finan-
cial impact on the customer who encounters a
failure is just as important. For example, the
customer’s lost productivity, lost data, and
potential loss of reputation in the market-
place must be acknowledged and accounted
for. Beyond the impact on the customer, low-
quality software can also impact the public and
the environment. Software engineers should
seek the optimal CoSQ_— the minimal total
cost for a specified quality level.

1.3. Standards, Models, and Certifications
[1% c4] [7, c24s2]

Sound use of software engineering, software
standards, and software process assessment
and improvement improves software quality.
One of the key general software engineering
standards is ISO/IEC/IEEE 12207:2017,
which describes the software life cycle pro-
cesses. Foremost, software engineers should
know the key software engineering stan-
dards that apply to their specific industry. As
Iberle discussed [19], the practices software
engineers use vary greatly depending on the
industry, business model and organizational
culture where they work. For example, IEEE
1228:1994 Standard for Software Safety Plans
and IEEE 1633:2016 Recommended Practice
on Software Reliability target industries
where safety and reliability are important.



The Plan-Do-Check-Act (PDCA) para-
digm differs from standards in that it often
proposes “best practices” for software engi-
neers from a specific perspective. (Refer to the
Software Engineering Process KA for more
information about the PDCA paradigm for
software.)

Other industry “best practices” models such
as the Control Objectives for Information and
Related Technologies (COBIT) for informa-
tion technology governance [27], the Project
Management Body of Knowledge (PMBOK®)
for project management [25], the Business
Analysis Body of Knowledge (BABOK®) [28],
the Capability Maturity Model Integration
(CMMI) [29] and The Open Group
Architecture Framework (TOGAF) propose
software related practices that can improve
the quality of software processes and products
[30]. Software organizations can also con-
sider the possible advantages of obtaining reg-
istrations or certifications (e.g., ISO 9001 for
quality [10], ISO 27001 for security [31], and
ISO 20000 for operations [32]), and software
engineers can also obtain Scrum and Scaled
Agile Framework® (SAFe®) certifications for
Agile processes [22]. The use of these models
and certifications have been shown to aug-
ment stakeholders’ confidence that the soft-
ware engineers’ knowledge and skills are up to
date and recognized internationally.

1.4. Software Dependability and Integrity
Levels [1% c4s8, ¢7s3.3] [11]

Software-intensive and safety-critical sys-
tems are those in which a system failure
could harm human life, other living things,
physical structures, or the environment. The
software in these systems is considered safe-
ty-critical and requires the use of systematic
methods and tools to ensure its high level of
quality. A growing number of industries are
using safety-critical software, including trans-
portation, chemical and nuclear, and medical.
Software failure in these systems could have
catastrophic effects. Engineers use industry
standards, such as software considerations in
airborne systems and equipment certification
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DO-178C [8] and railway applications EN
50128 [18], and emerging processes, tools,
and techniques to develop safety-critical soft-
ware more safely. These standards, tools and
techniques reduce the risk of injecting faults
into the software and thus improve software
availability, reliability, and maintainability.
Software engineers and their managers must
understand the threats and issues and develop
the skills needed to anticipate and prevent
accidents before they occur [15].
Safety-critical software can be catego-
rized as direct or indirect. Direct software is
embedded in a safety-critical system, such as
an aircraft’s flight control computer. Indirect
software includes software applications used
to develop safety-critical software. Indirect
software is also included in software engi-

neering environments and software test
environments.
Three complementary techniques for

reducing failure risk are avoidance, detec-
tion and removal, and damage limitation.
These techniques impact software functional
requirements, performance requirements and
development processes. Increasing risk implies
increasing SQA and more rigorous review
techniques such as inspections [16]. Higher risk
levels may necessitate more thorough inspec-
tions of requirements, design, and code, or
the use of more formal verification and valida-
tion techniques. Another technique for man-
aging and controlling software risk is building
assurance cases. An assurance case is a reasoned,
auditable artifact created to support the con-
tention that its claim or claims are satisfied.
It contains the following relationships: one or
more claims about properties, arguments that
logically link the evidence and any assump-
tions to the claims, and a body of evidence and
assumptions supporting these arguments [9].

1.4.1. Dependability [7, c10]
In cases where system failure may have severe
consequences, overall dependability (e.g.,
hardware, software, and human or operational
dependability) is the main quality require-
ment, aside from basic software functionality,
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for the following reasons: System failures
affect many people; users often reject sys-
tems that are unreliable, unsafe, or insecure;
system failure costs could be important; and
undependable systems might cause informa-
tion loss. Many standards address different
perspectives of dependability, such as reli-
ability and availability. System and software
dependability regroups several related quality
characteristics: availability, reliability, main-
tainability and supportability, safety and
security [21]. When developing dependable
software, engineers can apply tools and tech-
niques to reduce the risk of injecting faults into
the intermediate deliverables or the final soft-
ware product. They can use static, dynamic, or
formal methods for verification and validation
(V&V), and testing processes, as well as other
specialized techniques, methods, and tools to
identify defects that affect dependability as
early as possible in the software life cycle [7%
c10.5]. Additionally, they may have to incor-
porate specific mechanisms into the software
to guard against external attacks and to tol-
erate faults during its operation.

1.4.2. Integrity Levels of Software
[1* c4s8, ¢7s3.2] [11]

Defining integrity levels is a method of risk
management. An integrity level is “a value rep-
resenting project-unique characteristics (e.g.,
complexity, criticality, risk, safety level, secu-
rity level, desired performance, and reliability)
that define the importance of the system,
software, or hardware to the user” [11]. The
characteristics used to determine software
integrity level vary depending on the intended
application and use of the system. The soft-
ware is a part of the system, and its integrity
level is determined as a part of that system.
The assigned software integrity levels
might change as the software evolves. Design,
coding, procedural and technology features
implemented in the system or software can
raise or lower the assigned software integ-
rity levels. The software integrity levels estab-
lished for a project result from agreements
among the acquirer, supplier, developer, and

independent assurance authorities. A soffware
integrity level scheme is used to determine soft-
ware integrity levels [11].

Certain safety-critical industries, such
as avionics, railways, nuclear power, med-
ical devices and many others, industry-spe-
cific guidance can require a certain level of
independence for software quality activities
and can assign minimum V&YV techniques to
be used by integrity level (examples of such
techniques are: usability analysis, algorithm
analysis, boundary value analysis, data flow
analysis, walk-through review [11][26]).

2. Software Quality Management Process

Software quality management (SQM) is con-
cerned with “coordinated activities to direct
and control an organization with regard to
software quality” [6]. The purpose of the
Quality Management process is to assure that
products, services, and implementations of
the quality management process meet orga-
nizational and project quality objectives and
achieve customer satisfaction.

Animportant concept of SQM is the design
and upkeeping of a Quality Management
System (QMS). ISO90003 [26] interprets
ISO9001 concepts for the software industry.

QMS defines processes, process owners,
requirements for the processes, measurements
of the processes and their outputs, and feed-
back channels throughout the whole software
life cycle. A QMS comprises many key activ-
ities: SQA, V&V, reviews and audits, soft-
ware configuration management (SCM), and
requires policies, procedures, and processes
to ensure that everyone involved understands
what is expected in terms of software pro-
cess and product quality. For a QMS to be
effective, management support is impera-
tive. Management support implies that proj-
ects are trained to the QMS requirement and
have enough resources to achieve the quality
goal defined for it. Management sponsorship
should be solicited frequently during soft-
ware project review to ensure software quality
activities are executed and nonconformities

addressed.



For a software project, software quality
processes consist of tasks and techniques to
indicate how software plans (e.g., software
management, development, quality manage-
ment or conﬁguration management plans) are
implemented and how well the intermediate
and final products meet their specified require-
ments. Results from these tasks are assem-
bled in reports for management. SQM process
management is tasked with ensuring that the
report results are accurate and acted upon.

Risk management can also play an
important role in delivering quality software.
Incorporating disciplined risk analysis and
management techniques into the software
life cycle processes can help improve product
quality. (See the Software Engineering
Management KA for related material on risk
management.)

2.1. Software Quality Improvement
[1*,¢9 and ¢9s9] [2] [3]

Software quality improvement (SQI) is done
using many different approaches within the
software industry, including software process
improvement (SPI), Six Sigma, Lean, and
Kaizen, just to name a few. For example, the
SPI activities seek to improve process effec-
tiveness, efficiency, and other characteristics
to improve software quality. For example,
although SPI could be included in any of the
first three categories, many organizations
organize SPI into a separate category that
might span many projects.

Software product quality can be improved
using Lean principles as well as an iterative
process of continual improvement, which
includes management control, coordination
of activities, and feedback from many concur-
rent processes: (1) the process of improving
the software life cycle processes; (2) the pro-
cess of fault/defect categorization, detection,
removal, and prevention; and (3) a personal
improvement process.

The theory and concepts behind quality
improvement — such as building quality
through the prevention and early detec-
tion of defects, continual improvement, and
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stakeholder focus — are also pertinent to
software engineering. Experts in quality
have stated that a product’s quality is directly
linked to the quality of the process used to
create it. Improvement models such as the
Plan-Do-Check-Act (PDCA) improvement
cycle, evolutionary delivery, Kaizen, and
techniques like quality function deployment
(QFD) offer ways to specify quality objectives
and determine whether they are met.

Since software engineering is a complex

process, it cannot be reduced to a cookbook of
procedures. To complement the process and
tools improvement movement, Humphrey [32]
proposed the personal software process (PSP)
for software engineers to also assess their skills
and knowledge constantly and continually
improve them as well.
2.2. Plan Quality Management [1% c13]
Software quality planning includes defining
the software quality process to be used and
determining which quality standards and
models are to be used, defining specific
quality goals, estimating the effort to be used
to achieve each goal; and deciding at what
activities the software quality activity should
take place.

First, the software organization must
commit to quality by establishing their quality
management system (QMS), which includes
quality management policies, objectives, and
procedures. This requires that the respon-
sibility and authority for implementing the
QMS are assigned and that they are indepen-
dent of current project management teams.

An approved organizational policy, about
software quality, helps in guiding projects
and products development decisions as well
as behavior of personnel. Software engineers
should promote the use of formally approved
processes and procedures that implement the
quality policy and explain the roles, activities
to be executed and the expected results of key
software engineering activities. Consequently,
for a QMS to be used in improvement its pro-
cesses should be documented with its user in
mind and identify where quality controls are
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to be verified. Procedures explain in detail
what steps are taken to execute a specific
activity.

2.3. Ewaluate Quality Management

Once the QMS is in place, the ISO/IEC
Technical Specification TS 33061:2021 [23]
Standard defines a process assessment model
for software life cycle processes using five pro-
cess capabilities levels (from level 0: incomplete
to level 5: optimizing process). Additionally,
software engineers can assess the maturity of
their QMS activities in their software projects
using the IEEE 730:2014 Standard guidance
[6]. Management sponsorship supports pro-
cess and product evaluations. The evaluation
findings feed into an improvement program
for identifying detailed actions and improve-
ment projects to be addressed in a feasible
time frame. Periodically, the software engi-
neers will gather and analyze quality assur-
ance evaluation results. This can be achieved
by looking at quality measures and defect
characterization produced by the projects.

2.3.1. Software Quality Measurement
[1% c10] [7, 24s5]

Software quality measurements are used
to support decision-making. With the
increasing sophistication of software, quality
questions go beyond whether the software
works to how well it achieves measurable
quality goals. Quantifying some attribute
of software can help engineers evaluate its
quality or the quality of its process. (Process
measurement is described in detail in the
Software Engineering KA.)

Software quality measurement helps engi-
neers make determinations about soft-
ware quality (because models of software
product quality include measures to deter-
mine the degree to which the software product
achieves quality goals); managerial questions
about effort, cost, and schedule; when to stop
testing and release a product (see Test-Related
Measures in the Software Testing KA); and
the efficacy of process improvement efforts.

The CoSQ_assurance activities are an issue
frequently raised in deciding how a project
or a software development and maintenance
organization should be organized. Often,
generic models of cost are used; these models
are based on when a defect is found and how
much effort it takes to fix the defect rela-
tive to finding the defect earlier in develop-
ment. Software quality measurement data
collected internally may offer a better picture
of cost within the project or organization.
Although the software quality measure-
ment data may be useful by itself (e.g., the
number of defective requirements or the pro-
portion of defective requirements), mathe-
matical and graphical techniques can help
project stakeholders interpret the measures.
(See the Engineering Foundations KA and
the Mathematical Foundations KA.) These
techniques include the following:

* Descriptive statistics-based analysis (e.g.,
Pareto analysis, run charts, scatter plots,
normal distribution);

* Statistical tests (e.g., the binomial test,
chi-squared test);

* Trend analysis (e.g., control charts; see
The Quality Toolbox in Further Readings);

* Prediction (e.g., reliability models).

Descriptive statistics-based techniques and
tests often provide a snapshot of the more
troublesome areas of the software product
under examination. The resulting charts and
graphs are visualization aids decision-makers
can use to focus resources and conduct process
improvements where they seem most needed.
Results from trend analysis may indicate that
a schedule is slipping or that certain classes
of faults may become more likely unless some
corrective action is taken in development. The
predictive techniques help estimate testing
effort and schedule and predict failures. (More
discussion on measurement in general appears
in the Software Engineering Process and
Software Engineering Management KAs.
More specific information on testing mea-
surement is presented in the Software Testing
KA. Software quality measurement also



includes measuring defect occurrences and
applying statistical methods to understand
what types of defects occur most frequently.
Three widely used software quality measure-
ments are error density (number of errors per
unit size of documents/software), defect den-
sity (number of defects found divided by the
size of the software), and failure rate (mean
time to failure). Reliability models are built
from failure data collected during software
testing or from software in service and thus
can be used to estimate the probability of
future failures and assist in decisions about
when to stop testing. This information can
be used in SPI to determine methods to pre-
vent, reduce or eliminate defect recurrence.
The information also helps engineers under-
stand trends, how well detection and contain-
ment techniques are working, and how well
the development and maintenance processes
are progressing. They can use these measure-
ment methods to develop defect profiles for
a specific application domain. Then, for the
next software project within that organi-
zation, the profiles can be used to guide the
SQM processes — that is, to focus effort
on where problems are most likely to occur.
Similarly, benchmarks, or defect counts typ-
ical of that domain, may help engineers deter-
mine when the product is ready for delivery.
(Discussion about using measurement data to
improve development and maintenance pro-
cesses appears in the Software Engineering
Management and Software Engineering
Process KAs.)

2.4. Perform Corrective and Preventive Actions

It is important that when quality manage-
ment objectives are not met, corrective actions
be documented and submitted so that the
QMS be improved to prevent problem from
reoccurring in future software projects. This
requires that project participants have a way
of reporting software engineering process
and tools problems to an independent orga-
nization that will document and monitor the
progress of the corrective actions and inform
the relevant stakeholders.
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2.4.1. Defect Characterization [1% c1s3]
To help in the elimination of the cause or
causes of an existing nonconformity or unde-
sirable situation to prevent recurrence, soft-
ware engineers can use software quality
control (SQC) techniques to find errors,
defects, and failures in their processes and
products. When tracking errors, defects and
failures, the software engineer is interested in
the number and types of incidents. Numbers
alone, without classification, might be insuf-
ficient to help in identifying the underlying
causes and thus to prevent them in the future.
Therefore, software engineers should establish
a meaningful defect classification taxonomy to
describe and categorize such anomalies. One
probable action resulting from peer reviews
and testing findings is to remove these errors
and defects early from the work product under
examination.

Other SQM activities attempt to eliminate
their causes (e.g., root cause analysis (RCA)).
RCA activities include analyzing and sum-
marizing the findings to find root causes and
using measurement techniques to improve the
software engineering processes, techniques
and tools. (Process improvement is pri-
marily discussed in the Software Engineering
Process KA. RCA is further discussed in the
Engineering Foundations KA.)

Data on errors and defects found during
SQA and control techniques may be lost
unless they are recorded. For some techniques
(e.g., peer reviews and inspections), software
engineers are present to record such data and
to address issues and make decisions. In addi-
tion, when automated tools are used (see Topic
4, Software Quality Tools), the tool output
may provide defect trends reports that can be
provided to the organization’s management.

3. Software Quality Assurance Process

3.1. Prepare for Quality Assurance
[1%, c1s5, c4s6] [6]

Software quality assurance (SQA) is defined as
“a set of activities that define and assess the
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adequacy of software processes to provide evi-
dence that establishes confidence that the soft-
ware processes are appropriate for and produce
software products of suitable quality for their
intended purposes.” To correct a common
misunderstanding, SQA is not only testing of
a software. A key attribute of SQA, in critical
systems, is the objectivity of the SQA function
concerning the quality of a software product.
In this case, the SQA function might also be
organizationally independent of the project;
that is, free from technical, managerial, and
financial pressures [6]. SQA has two aspects:
product assurance and process assurance,
which are introduced in Section 2.3.

The software quality plan (in some industry
sectors, it is termed the software quality
assurance plan (SQAP)) defines the activities
and tasks used to ensure that software devel-
oped for a specific product satisfies the proj-
ect’s established requirements and user needs
within project cost and schedule constraints
and is commensurate with project risks. The
SQAP first ensures that quality targets are
clearly defined and understood.

The SQAP’s quality activities and tasks
are specified, along with their costs, resource
requirements, objectives, and schedule in
relation to related objectives, in the software
engineering management, software develop-
ment and software maintenance plans. The
SQAP identifies documents, standards, prac-
tices, and conventions governing the project
and how these items are checked and mon-
itored to ensure adequacy and compliance.
The SQAP also identifies measures; statistical
techniques; procedures for problem reporting
and corrective action; resources such as tools,
techniques, and methodologies; security for
physical media; training; and SQA reporting
and documentation. Moreover, the SQAP
addresses the SQA activities of any other type
of activity described in the software plans —
such as procurement of supplier software for
the project, commercial off-the-shelf (COTY)
software installation and service after soft-
ware delivery. It can also contain acceptance
criteria and reporting and management activ-
ities that are critical to software quality. The

SQA plan should not conflict with the soft-
ware configuration management plan or any
other relevant project plannning artifact.
Moreover, they should be considered com-
plimentary activities (for process SQAP the
SCM Process Audit and the Testing activities
for SCM Functional Audit).

Software quality encompasses several per-
spectives: the software process quality, the
software end-product quality and the soft-
ware work products (also called intermediary
products) quality. The next sections cover each
perspective of software quality knowledge a
software engineer must have.

3.2. Perform Process Assurance

[1* c3s2-3, c4s6.1.3,c8,c9] [7, c25]

Crosby [2] and Humphrey [3] have demon-
strated that software quality management
(SQM) and software engineering process
quality have a direct effect on the quality of
the final software product. (Models and cri-
teria that evaluate and improve the capabilities
of software organizations are primarily project
organization and management considerations
and, as such, are covered in the Software
Engineering Management and Software
Engineering Process KAs.) ISO 9001 [10]
proposes another process quality perspec-
tive, where a management system that over-
sees the processes’ actors, activities, controls,
input, and outputs ensures the quality of out-
puts (e.g., work products and final product).
A management system is defined as a “set of
interrelated or interacting elements of an
organization to establish policies and objec-
tives, and processes to achieve those objec-
tives” [10]. This perspective requires software
engineering organizations to take the time to
describe their policies, processes, and proce-
dures with enough detail that software engi-
neer roles and responsibilities are clear during
life cycle activities (as detailed in the Software
Engineering Process KA).

SQA activities, listed in IEEE730:2014 [6],
describe the many quality assurance activities
that should be conducted early in a software
project’s life cycle to ensure quality. Software



engineers should be aware of the need to plan
and execute SQA activities at certain project
milestones and keep records of their execu-
tion. These activities consist of document and
code reviews as well as verification and val-
idation (V&V) activities, including testing
(as detailed in Section 3.4 of this KA), which
evaluate the output of a process’s compliance
with its requirements and specifications.
Finally, software configuration man-
agement (SCM) is an important activity to
ensure the quality of work products and soft-
ware. Configuration management is defined as
the “discipline applying technical and admin-
istrative direction and surveillance to:

* identify and document the functional
and physical characteristics of a config-
uration item;

* control changes to those characteristics;

* record and report change processing and
implementation status;

* verify  compliance
requirements.”

with  specified

Software engineers should identify which
work products and software artifacts require
configuration management. In addition,
they should be familiar with source code
versioning processes, which involve keeping
track of baselined and incremental versions
of the software and ensuring that changes
different developers make do not interfere
with one another, and they should know
how to operate the version control tool
kit. (Refer to the Software Configuration
Management KA for more information
about this process.)

3.3. Perform Product Assurance
[1%,s3.2—-s3.3] [7, c4,56.1.2]

First, the software engineer must determine
the real purpose of the software to be designed
and constructed. Stakeholder requirements are
paramount here. They include quality require-
ments (called Quality of Service Constraints in
the Software Requirements KA) and func-
tional requirements. Thus, software engineers
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are responsible for eliciting quality require-
ments that might not be explicit at the outset
and for understanding their importance and
the difficulty in defining them, measuring
them, and establishing them for final accep-
tance. Software engineers should understand
how to define quality requirements as well as
their quality targets to ensure they can effec-
tively be measured at the acceptance stage
of the project. During the project planning,
software engineers must keep these quality
requirements in mind. They must also antici-
pate potential additional development costs if
attributes such as safety, security and depend-
ability are important.

What constitutes a software product’s
many measurable quality characteristics is
described in ISO/IEC 25010:2011 [4]. This
standard proposes several software product
quality models, consisting of characteristics
and sub-characteristics, for software product
quality and software quality in use. Another
is IEEE 982.1:2005 Standard Dictionary
of Measures to Produce Reliable Software.
These software characteristics are commonly
called product quality requirements, which are
nonfunctional software requirements [77, c4,
$6.1.2]. Software engineers should know the
many software characteristics that can be
planned, implemented, and measured during
software construction (e.g., functional suit-
ability, performance efficiency, compatibility,
usability, reliability, security, maintainability,
and portability). Software engineers should
also know that certain quality characteris-
tics have conflicting impacts. For example,
trying to augment the security characteristic
by encrypting data might adversely affect
the performance characteristic. This stan-
dard also proposes a general data quality
model that focuses on data quality as part of
a computer system and defines quality char-
acteristics for target data used by humans
and systems.

Another software product quality per-
spective is the quality of work products. The
term work product means any artifact resulting
from a process used to create the final soft-
ware product. Work products include system/
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subsystem specifications, software require-
ments specifications for a system’s software
components, software design descriptions,
source code, software test documentation
and test reports. Sound engineering practice
requires that intermediate work products rele-
vant to quality be evaluated using work product
reviews and inspections (discussed later in
this chapter) throughout the software engi-
neering process.

3.4. V&V and Testing [1% c7] [11]
Verification ensures that the product is built
correctly in that the output products of a life
cycle phase meet the specifications imposed
on them in previous phases. Verification is
defined as “the process of evaluating a system
or component to determine whether the prod-
ucts of a given development phase satisfy the
conditions imposed at the start of that phase”
[11]. Alternatively, validation ensures that the
right product is built — the product fulfills its
specific intended purpose. It is defined as “the
process of evaluating a system or component
during or at the end of the development pro-
cess to determine whether it satisfies specified
requirements.”

The purpose of V&V is to help the devel-
opment organization build quality into the
software throughout the development life
cycle. V&V includes software testing tasks.
Software testing is a necessary activity to
ensure product quality. However, in most
cases, software testing is insufficient to
establish confidence that the software fits
its intended use. V&V tasks listed in IEEE
Standard 1012:2016 [11] objectively assess
products and processes throughout the life
cycle. This assessment demonstrates whether
the requirements are correct, complete, accu-
rate, consistent, and testable. The verifica-
tion process and the validation process should
begin early in development or maintenance.
This prevents defects late in the life cycle,
which would incur rework and significantly
increase costs. Software engineers should
identify the product integrity level and ensure
the minimum V&YV tasks are assigned for key

product features concerning both the product’s
immediate predecessor and the planned spec-
ifications. Optional V&V tasks are also listed
and can improve software product quality.
Keeping a record of the traceability among
software work products can help augment
the quality of the V&V activities. Traceability
is defined as the “ability to trace the history,
application or location of an object” [14].

Early planning of V&V activities ensures
that each resource, role, and responsibility
is clearly assigned. The resulting V&V plan
documents the various resources and their
roles and SQA activities, as well as the tech-
niques and tools to be used. Software engi-
neers should choose and apply the proper
V&V task depending on the software
integrity level. (Refer to Section 1.4.2).
V&V can also be executed by an indepen-
dent organization for very critical software.
Independent verification and validation
(IV&V) are defined as “V&V performed by
an organization that is technically, mana-
gerially, and financially independent of the
development organization” [11].

Software V&V tasks can be sorted into
static, dynamic and formal tasks [20].
Dynamic techniques involve executing the
software; static techniques involve analyzing
documents and source code but not executing
the software; formal techniques use mathe-
matics and formal specification languages.

There are no strong boundaries between
“Static analysis techniques”, “dynamic anal-
ysis techniques” and “formal analysis tech-
niques”. For example, static and dynamic
analysis techniques usually have a strong
formal background such as data-flow analysis
or model checking.

3.4.1. Static Analysis Technigues

Static analysis techniques analyze a work
product’s content and structure (including
requirements,  interface  specifications,
designs, and models) without executing the
software. The only way to detect non-exe-
cutable code is through static analysis as no
dynamic test can verify that. Static techniques



can be executed manually or with the help of
a tool. For example, code reading, peer review
of a work product, and static analysis of source
code control flow are considered static tech-
niques because they do not involve executing
the software code.

Section 3.4.5 will show that review and
audit processes are considered static analysis
activities, meaning that no software or models
are executed. Instead, they examine software
engineering artifacts (also called interme-
diary or work products) concerning standards
established by the organization or project for
those artifacts.

3.4.2. Dynamic Analysis Tec/migues

Dynamic analysis techniques involve exe-
cuting or simulating the software code, looking
for errors and defects. Different dynamic
techniques are performed throughout soft-
ware development, maintenance, and opera-
tion. Generally, these are testing techniques,
but simulation, model analysis and model
checking are considered dynamic analysis
techniques. (See the Software Engineering
Models and Methods KA.) In addition, black
box testing is considered a dynamic analysis
technique, as the software engineer analyzes
the output received following the entry of
inputs. (See the Software Testing KA.)

3.4.3. Formal Analysis Technigues [7*, c10s5]

Formal analysis techniques (also called formal
methods) are “mathematical approaches to
software development where you define
a formal model of the software. You may
then formally analyze this model to search
for errors and inconsistencies” [7* c¢10s5].
Sometimes, the software requirements may
be written using a more formal specifica-
tion language known as formal methods.
They have mostly been used to verify cru-
cial parts of critical systems, such as spe-
cific security and safety requirements.
(See also Formal Methods in the Software
Engineering Models and Methods KA.)
Different groups may perform testing
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during software development, including
groups independent of the development
team. The Software Testing KA is devoted
entirely to this subject.

3.4.4. Software Quality Control and Testing
[1* ¢7s10]

Testing is considered an important product
quality control activity included in a soft-
ware development project’s V&V processes.
Quality Control is “a set of activities that
measure, evaluate and report on the quality
of software project artifacts throughout the
project life cycle” [25]. Software testing is
one of many verification activities that con-
firm that software development output meets
input requirements. IEEE 730:2014 [6] lists
the many testing and retesting activities soft-
ware engineers should plan, execute, and
record. It also recommends that testing com-
pletion criteria be set. Software engineers
should plan the testing activities, including
levels, techniques, measures, and tools. A
software quality engineering team, for crit-
ical systems, should particularly be involved
in qualifying software products prior to its
delivery (i) either for further integration or
(ii) for operations in target computing envi-
ronment; as an independent test and evalua-
tion activity, without involving development
team members in the process. (Refer to the
Testing KA for details about the knowledge
software engineers should have about soft-
ware testing.)

3.4.5. Technical Reviews and Audits
[1% c5, 6] [23, s4, s5]

SQC techniques, for assessing the quality of
a software, were presented in section 2.4.1.
For the other artifacts, product quality con-
trol is assessed using reviews and inspections
of these work products. These SQC activities
are planned and executed during development,
maintenance, and operations activities [17].
Reviews are valuable because they can
identify issues early in development or even
before a component is designed. Fixing a
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defect in a component that has been coded is
much more expensive than catching it before-
hand. Peer reviews are defined as “the review
of work products performed by peers during
development of the work products to identify
defects for removal” [14]. For example, during
software development, a code review (often
done by using a pull request technique/tool)
occurs when a peer reviews the code, often at
the software developer’s request, before it can
be merged into a project.

Different types of work product reviews
(e.g., formal, and informal) are distinguished
by purpose, level of independence, tools
and techniques used, roles involved, and
by the subject of the activity. Reviews play
important roles in software quality, in SCM,
and in the sharing of knowledge among col-
leagues. However, these different roles share
a single purpose — to ensure the quality
of the delivered products. Reviews should
be part of the software engineering culture
and should be planned, executed, and doc-
umented during the software life cycle. In
Agile life cycles, pair programming invites
continuous reviews. Different review types
for work products are described in ISO/IEC
20246:2017 [12]:

* Ad hoc reviews — unstructured reviews
where each reviewer is expected to find as
many defects as possible of any type;

* Checklist-based reviews — system-
atic reviews identifying issues based on
checklists;

* Scenario-based reviews — reviews where
reviewers are provided with structured
guidelines on how to read through the
work product under review;

* Perspective-based reviews — reviews
where reviewers take on a specific tech-
nical perspective and review the work
product from that stakeholder’s view-
point; and

* Role-based reviews — reviews in which
the reviewer evaluates the work product
from the perspective of various stake-
holder roles, which might differ from
their daily role.

Audits are more formal activities that are
often mandated to be performed by third
parties to ensure independence. In mature
organizations, technical reviews and audits
are fully integrated with the overall project
plans. Therefore, technical reviews and audits
should be planned, approved, and conducted.
Although a project audit often addresses
the whole project’s current state, technical
reviews can also be more focused and address
a specific project phase [24]. System require-
ments reviews help ensure that the level of
understanding of top-level system require-
ments is adequate to support further require-
ments analysis and design activities and that
the system can proceed into initial system
design with acceptable risk; System func-
tional or preliminary design reviews help
ensure that the system under review can pro-
ceed into preliminary or detailed design with
acceptable risk and that all system require-
ments and functional performance require-
ments derived from the approved preliminary
system specification are defined and con-
sistent with the project budget, program
schedule, risk, and other program and system
constraints; Preliminary design reviews help
ensure that the preliminary design for the
system under review is sufficiently mature and
ready to proceed into detailed design and can
meet the stated performance requirements
within program budget, schedule, risk and
other program and system constraints; Test
readiness reviews assess test objectives, test
methods and procedures, test scope, safety,
readiness for the project test and evaluation,
and whether test resources have been properly
identified and obtained; Production readiness
reviews ascertain that the system design is
ready for production and that the project has
accomplished adequate production planning
for entering production.

4. Software Quality Tools
[¢3s2.3,¢7s8.1, ¢7s11]

Software tools improve software quality.
Simple tools can be forms and checklists (e.g.,
a requirements traceability matrix or a code



review checklist). But automated tools can also
be of great help to improve software efficiency
and quality. Examples of automated tools are
tools that allow code versioning/branching (e.g.,
Git) and pull requests for code review. DevOps
tools in services/scripts like on-demand envi-
ronments, continuous integration/continuous
delivery (CI/CD), code quality assessment, and
automated testing are important contributors to
software quality. (See the Software Operations
KA about tools.)

'These tools are known as static and dynamic
analysis tools. Static analysis tools input source
code, perform syntactical and semantic anal-
ysis without executing the code. There is a large
variety in the depth, thoroughness and scope of
static analysis tools that can be applied to arti-
facts, including models, and source code. (See
the Software Construction, Software Testing,
and Software Maintenance KAs for descrip-
tions of dynamic analysis tools.) Categories of
static analysis tools include the following:

* Tools that facilitate and partially auto-
mate reviews and inspections of docu-
ments and code. These tools can route
work to different participants to partially
automate and control the review process.
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In addition, they allow users to enter
defects found during inspections and
reviews for later removal;

Tools that help organizations perform
software safety hazard analysis. These
tools provide, for example, automated
support for failure mode and effects
analysis (FMEA) and fault tree anal-
ysis (FTA);

Tools that support tracking of software
problems. These tools enable entry of
anomalies discovered during software
testing and subsequent analysis, disposi-
tion, and resolution. Some tools include
support for workflow and for tracking
problem resolution status; and

Tools that analyze data captured from
software engineering environments and
software test environments and pro-
duce visual displays of quantified data
in graphs, charts, and tables. These tools
sometimes include the functionality to
perform statistical analysis on data sets
(to discern trends and make forecasts).
Some of these tools provide defect injec-
tion and removal rates, defect densities,
yields, and distribution of defect injection
and removal for each life cycle phase.
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2. Software Quality
Management Process
2.1. Software Quality Improvement | C9s9
2.2. Plan Quality Management
2.3. Evaluate Quality Management | C10 c24s5
2.4. Perform Corrective and cls3
Preventive Actions
3. Software Quality
Assurance Process
3.1. Prepare for Quality Assurance | c1s5, c4s6 cl4
3.2. Perform Process Assurance c3s2-3 c25
c8, ¢9, c4s6.1.3
3.3. Perform Product Assurance c3s2-3 c4s1.2
c5, ¢7, c4s6.1.2
3.4. Verification & Validation c5, ¢6, c7 ¢10s10.5
and Tests
4. Software Quality Tools c3s2.3, ¢7s8.1, c7s11 X

FURTHER READINGS

IEEE 730-2014, “IEEE Standard for Software
Quality Assurance Processes,” 2014 [6].

Requirements for initiating, planning, con-
trolling, and executing the Software Quality
Assurance processes of a software develop-
ment or maintenance project.

IEEE 1012:2016, “IEEE Standard for
System, Software, and Hardware Verification
and Validation,” 2016 [11].

Verification and validation (V&V) processes
are used to determine whether the develop-
ment products of a given activity conform to
that activity’s requirements and whether the
product satisfies its intended use and user
needs. V&V life cycle process requirements
are specified for different integrity levels.

ISO/IEC  20246:2017, “Software and
Systems Engineering — Work Product
Reviews,” 2017 [12].

Establishes a generic framework for work
product reviews that can be referenced and
used by all organizations involved in the man-
agement, development, testing and mainte-
nance of systems and software.

N. Leveson, Safeware: System Safety and
Computers [15].

This book describes the importance of soft-
ware safety practices and how these practices
can be incorporated into software develop-
ment projects.

T. Gilb and D. Graham, Software Inspection [16).

This book introduces measurement and sta-
tistical sampling for reviews and defects. It
presents techniques that produce quanti-
fied results for reducing defects, improving
productivity, tracking projects and creating
documentation.

K.E. Wiegers, Peer Reviews in Software: A
Practical Guide [17*].



'This book provides clear, succinct explanations
of different peer review methods distinguished
by level of formality and effectiveness. It pro-
vides pragmatic guidance for implementing the
methods and for determining which methods
are appropriate for given circumstances.
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CHAPTER 13

Software Security

ACRONYMS

CC
SDLC

Common Ceriteria

Secure Development Life Cycle

INTRODUCTION

Security has become a significant issue in
software development because of potential
misuse and increasing malicious activity tar-
geting computer systems. In addition to the
usual correctness and reliability concerns,
software developers must pay attention to
the security of the software they develop.
Secure software development builds secu-
rity by following a set of established and/
or recommended rules and practices. Secure
software maintenance complements secure
software development by ensuring that no
security problems are introduced during soft-
ware maintenance and that identified vulner-
abilities, which are errors that attackers can
exploit, can be handled during the software
life cycle. Security vulnerabilities are not
only introduced at the development, but also
by third party components such as libraries,

COTS, or OS.

BREAKDOWN OFTOPICS FOR
SOFTWARE SECURITY

Breakdown of topics for the Software Security
KA is shown in Figure 13.1.
1. Software Security Fundamentals [37,9]

A generally accepted belief about software
security is that it is much better to design

security into software than to patch it in after
the software is developed. To design secu-
rity into software, one must consider every
development life cycle stage. Secure software
development involves software requirements
security, software design security, software
construction security and software testing
security. In addition, security must be consid-
ered during software maintenance, as secu-
rity faults and loopholes can be and often are
introduced during maintenance.
1.1. Software Security [10]
Security is a product quality characteristic
representing the degree to which a product or
system protects information and data so that
persons or other products or systems have data
access appropriate to their types and levels of
authorization [10]. (For more information

about product quality, refer to the Software
Quality KA.)

1.2. Information Security [11]
Information security preserves confidenti-
ality, integrity and availability of informa-
tion. Other properties, such as authenticity,
accountability, non-repudiation and reliability
can also be involved [11]. Confidentiality is
the property of ensuring that information is
not disclosed to unauthorized individuals,
entities or processes. Integrity is the property
of accuracy and completeness. Availability
is the property of being accessible and
usable on demand by an authorized entity.
Software engineers should define the secu-
rity properties of their software and maintain
them throughout the software development
life cycle.

13-1
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Figure 13.1. Breakdown of Topics for the Software Security KA
1.3. Cybersecurity [12][38]  2.1. Capability Maturity Model
[3%, c22][14]

Cybersecurity is safeguarding of people,
society, organizations and nations from cyber
risks. Safeguarding means to keep cyber risk
at a tolerable level.

Generally, cybersecurity addresses secu-
rity issues in cyberspace, including the
following:

* Social engineering attacks

* Hacking

* Malicious software (malware)

* Other potentially unwanted software [12]

Software engineers should consider the
mitigation of such threats as part of software
development.

2. Security Management and Organization
[1% c7][13]

Security governance and management are
most effective when they are systematic; in
other words, when they are woven into the
culture and fabric of organizational behaviors
and actions. Project managers need to elevate
software security from a stand-alone tech-
nical concern to an enterprise issue [1].

Many organizations practice security engi-
neering in the development of computer pro-
grams, including operating systems, functions
that manage and enforce security, packaged
software products, middleware, and applica-
tions. Therefore, a diverse array of individuals
must know how to apply appropriate methods
and practices, including product developers,
service providers, system integrators, system
administrators and even security specialists.
Systems Security Engineering — Capability
Maturity Model (SSE-CMM), which helps
measure the process capability of an organi-
zation that performs risk assessments [14], can
be an important tool.

2.2. Information Security Management System
[15]

ISO/IEC 27001:2022 specifies the require-
ments for establishing, implementing,
maintaining and continually improving an
information security management system
(ISMS) within the organizational context
[15]. ISMS is a documented plan for man-
aging the technology-related security of an



organization. This includes documenting risks
and taking measures to address them, aiming
to protect the organization’s data and prevent
security breaches [15]. Organizations should
use it to continually conduct risk assess-
ments to identify security risks and vulnera-
bilities and implement protective measures by
deploying an IT team to monitor these risks.
An ISMS can thus also raise new or changed
existing software security requirements. In
addition, software security requirements are
derived from laws, regulations and obligations
for compliance.

2.3. Agile Practice for Software Security
[4,c15,c16]

Agile teams need to understand and adopt
security practices and take more responsibility
for their systems’ security. Security profes-
sionals mustlearn to accept change, work faster
and more iteratively, and think about security
risks and how to manage risks in incremental
terms. Finally, and most important, secu-
rity needs to become an enabler instead of a
blocker. The keys to a successful Agile security
program are the involvement of the security
team and developers, enablement, automation,

and agility to keep up with Agile teams [4].

3. Software Security Engineering and
Processes

3.1. Security Engineering and Secure
Development Life Cycle (SDLC)
[1%,c1][16][36]

Software is only as secure as its development
process. Security must be built into software
engineering to ensure software security. The
SDLC concept is one trend that aims to do
this. SDLC uses a classical spiral model that
views security holistically from the perspective
of the software life cycle and ensures that secu-
rity is inherent in software design and develop-
ment, not an afterthought later in production.
The SDLC process is claimed to reduce soft-
ware maintenance costs and increase software
reliability against security-related faults.
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Recently, DevSecOps (meaning the integra-
tion of development, security and operations)
has emerged. Beyond SDLC, DevSecOps
includes an approach to culture, automation
and platform design to make the software life
cycle as Agile and responsible as Agile devel-
opment and continuous integration (CI).

3.2. Common Criteria for Information
Technology Security Evaluation

[3% c22, c25][34][35]

Security evaluation establishes confidence in
the security functionality of I'T products and
the assurance measures applied to them. The
evaluation results may help consumers deter-
mine whether IT products meet their secu-
rity needs or standards conformity. ISO/
IEC 15408:2022, named Common Criteria
(CC) for Information Technology Security
Evaluation, is useful as a guide for developing,
evaluating and/or procuring I'T products with
security functionality [34].

CC addresses the protection of assets from
unauthorized disclosure, modification or loss
of use. The categories of protection relating
to these three types of security failure are
commonly called confidentiality, integrity and
availability, respectively.

4. Security Engineering for Software
Systems [1*,c1,e3][3%,c1,c3]

4.1. Security Reguirements
[1%,c3][2,¢2][3%,c20,c30][18]

Security requirements engineering includes
elicitation, specification, and prioritization. It
considers threats, as illustrated by misuse and
abuse cases, threat actors, security risk assess-
ments, selection and application of speci-
fication methods, prioritization methods,
inspections, and revisions. Selection of life-
cycle models may impact the order of activities,
and software product revision implies a need
to revisit security requirements. Traceability
of security requirements throughout the
development process is important, and secu-
rity teams may include specialists in security
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requirements. Numerous methods and tools
exist in support of security requirements
engineering.

4.2. Security Design
[1*,c4][2,c5][3%,c20,c31][17,40]

Security design concerns how to prevent
unauthorized disclosure, creation, change,
deletion or denial of access to informa-
tion and other resources. It also concerns
how to tolerate security-related attacks or
violations by limiting damage, continuing
service, speeding repair and recovery, and
failing and recovering securely. Access con-
trol is a fundamental concept of security.
Most controls build on cryptographic algo-
rithms and cryptographic material like keys.
It is important to carefully select these and
how cryptographic material is created, dis-
tributed and managed.

Software design security deals with the
design of software modules that fit together
to meet the security objectives specified in
the security requirements. To meet secu-
rity requirements, developers conduct threat
modeling, illustrating how a system is being
attacked to specify a security design for the
mitigation. This step clarifies the details of
security considerations and develops the spe-
cific steps for implementation. Factors con-
sidered may include frameworks and access
modes that set up the overall security mon-
itoring/enforcement strategies, as well as the
individual policy enforcement mechanisms.
4.3. Security Patterns [1*,c4][19][20, 21]
A security pattern describes a particular recur-
ring security problem that arises in a specific
context and presents a well-proven generic
solution [21].

4.4. Construction for Security
[1*,c5][3%,c20,c31][22, 23, 24]

Software construction security concerns how
to write programming code for specific sit-
uations to address security considerations.

The term software construction security can
mean different things to different people. It
can mean the way a specific function is coded
so that the code itself is secure, or it can
mean the coding of security into software.
Unfortunately, most people entangle the two
meanings without distinction. One reason
for such confusion is that it is unclear how to
ensure a specific coding is secure. For example,
in the C programming language, the expres-
sions “i<<1” (shift the binary representation of
i’s value to the left by one bit) and “2*1” (mul-
tiply the value of variable i by constant 2) mean
the same thing semantically, but do they have
the same security ramifications?

The answer could be different for different
combinations of ISAs and compilers. Because
of this lack of understanding, software con-
struction security — in its current state —
mostly refers to the second aspect mentioned
above: the coding of security into software.
Coding of security into the software can be
achieved by following recommended rules. A
few such rules are:

* Structure the process so that all sec-
tions requiring extra privileges are mod-
ules. The modules should be as small as
possible and perform only the tasks that
require those privileges.

* Ensure that any assumptions in the pro-
gram are validated. If this is not possible,
document them for the installers and
maintainers so they know the assump-
tions attackers will try to invalidate.

* Ensure that the program does not
share objects in memory with any
other program.

¢ Check every function’s error status. Do
not recover unless neither the error’s
cause nor its effects affect any secu-
rity considerations. The program should
restore the state of the software to the
state it had before the process began and
then terminate.

Although there are no bulletproof ways to
achieve secure software development, some
general guidelines exist that can be helpful.



These guidelines span every phase of the soft-
ware development life cycle. The Computer
Emergency Response Team (CERT/CC)
publishes reputable guidelines [22], and the
following are its top 10 software security
practices:

Validate input.

Heed compiler warnings.

Architect and design for security policies.
Keep it simple.

Default deny.
Adhere to the principle of least privilege.
Sanitize data sent to other software.
Practice defense in depth.

Use effective quality assurance techniques.
0. Adopt a software construction secu-
rity standard.

S0 PN R WD

4.5. Security Testing
[1%,c5][2,c7][3%,c24,c31][26, 27]

Security testing ensures that the implemented
software meets the security requirements.
It also verifies that the software implemen-
tation contains none of the known vulner-
abilities. Whereas general software testing
methods can handle the former, the latter
requires security-specific testing methods.
(For more information about testing, refer to
the Software Testing KA.)

There are two general approaches to
security-specific testing. The first approach
includes detecting vulnerabilities through
static analysis, which can be conducted on
the source code or compiled binaries. A static
analysis on the source code can be used to
detect programming language or implemen-
tation-specific vulnerabilities, while static
analysis on compiled binaries can be used to
detect vulnerabilities that are not apparent
in the source code due to compiler optimi-
zations or hidden in the compiled third-
party components. Static analysis can be
automated using tools, however while auto-
mation can play a significant role, the exper-
tise of security professionals are required to
properly operate and configure the tools, and
verify the results.
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'The other approach to detect vulnerabilities
is through dynamic testing, typically using
techniques such as vulnerability assessment
or penetration testing (also known as the eth-
ical hacking test), to detect vulnerabilities in
software behavior. Like static analysis, there
are tools that can automate dynamic testing,
such as web application scanners and fuzzing
tools. Security experts skilled in the applica-
tion domain should be engaged to perform
these tests, and such tests should always be
conducted within legal boundaries and with
proper authorization. The latter aspects are
crucial to differentiate such tests from illegal
hacking activities.

4.6. Vulnerability Management
[1%,c5][3*,c24][28,29, 30]

Using sound coding practices can help sub-
stantially reduce software defects commonly
introduced during implementation [1]. Such
common security defects are categorized
and shared with databases: the Common
Vulnerabilities and Exposures (CVE) [28],
Common Weakness Enumeration (CWE) [29],
and Common Attack Pattern Enumeration
and Classification (CAPEC) [30]; Common
Vulnerability Scoring System (CVSS) [41]
expresses characteristics and severity of soft-
ware vulnerabilities. Programmers can refer to
these databases for security implementation,
and some tools are available to check common
vulnerabilities in code. Security maintenance
encompasses the task to mitigate effects of vul-
nerabilities in a system and third party com-
ponents which the system uses. The task often
comes with a vulnerability disclosure pro-
cess that allows to report the identification of
vulnerabilities.

5. Software Security Tools

5.1. Security Vulnerability Checking Tools
[1*,c6][25]

Security vulnerability checking tools, such
as source code analyzers and binary anal-
ysis tools, can be used to identify potential
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security vulnerabilities and issues. Source
code analyzers scrutinize code to detect
security vulnerabilities, such as injec-
tion flaws, buffer overflows, and insecure
library use. They are useful at finding vul-
nerabilities that can be identified through
code patterns and logical flaws. Binary
analysis tools, on the other hand, examine
compiled code, including third-party
libraries, for vulnerabilities that might not
be apparent in the source code or that arise
from the compilation process. While these
tools significantly aid in detecting vulnera-
bilities, they cannot find all vulnerabilities.
For example, they might not capture vulner-
abilities that manifest in hard-to-produce
software states or that crop up in unusual
circumstances [1].

5.2. Penetration Testing Tools [2,c4]
Penetration testing tools can be used to eval-
uate a system’s security in its operational
environment. These tools perform controlled
attacks on the system to uncover vulnerabili-
ties and security weaknesses, using techniques
such as fuzzing [2], where malformed, mali-
cious, or random data is submitted to the sys-
tem’s various entry points to detect faults. The
use of penetration testing tools to expose vul-
nerabilities provide insights into how an actual
attacker could exploit the system.

6. Domain-Specific Software Security

6.1. Security for Container and Cloud
[31% c1-c3]]

Cloud infrastructure and services are often
inexpensive and easy to provision, which can
quickly lead to having many assets strewn all
over the world and forgotten. These forgotten
assets are like a ticking time bomb, waiting to
explode into a security incident [31].

One important difference with cloud envi-

ronments is that physical assets and protec-
tion are generally not a concern. Developers
can outsource asset tags, anti-tailgating, slab-
to-slab barriers, placement of data center win-
dows, cameras, and other physical security
and physical asset tracking controls [31].
6.2. Security for 1ol Software [32,33]
As part of today’s internet of things (IoT),
systems are interconnected with many other
devices, especially back-end systems suf-
fering from all the well-known security flaws
inherent in today’s business IT. Attackers
gaining access to business I'T platforms, for
instance, by exploiting browser vulnerabil-
ities, will likely also gain access to weakly
protected Iol industrial devices. This can
cause severe damage, including safety inci-
dents. Hence, the introduction of a massive
number of end points from the consumer or
industrial environment creates fertile ground
for the exploitation of weak links. Hardening
these end points, securing device-to-de-
vice communications, and ensuring device
and information credibility in what until
now have been closed, homogeneous sys-
tems present new challenges. Comprehensive
risk and threat analysis methods, as well as
management tools for Iol' platforms, are
required [33].

6.3. Security for Machine Learning-Based
Application [39,c8]

Although machine learning techniques are
widelyused in many systems, machinelearning
presents a specific vulnerability. Attackers
can change the decisions of machine learning
models. There are two kinds of attacks: model
poisoning, which attacks training data, and
evasion, which attacks inputs to trained
models [39].
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MATRIX OF TOPICS VS. REFERENCE MATERIAL

Topic

Allen et
al. 2008 [1%]

Bishop
2019 [3%]

Dotson

2019 [317]

1. Software Security Fundamentals

1.1. Software Security

1.2. Information Security

1.3. Cybersecurity

c23

2. Security Management and Organization

c7

2.1. Capability Maturity Model

c22

2.2. Information Security Management System

2.3. Agile Practice for Software Security

3. Software Security Engineering
and Processes

3.1. Security Engineering and Secure Development
Life Cycle

cl

3.2. Common Criteria for Information Technology
Security Evaluation

c22, c25

4. Security Engineering for Software Systems

cl, c3 cl, c3

4.1. Security Requirements

c3 c20, c31

4.2. Security Design

c4 c20, c31

4.3. Security Patterns

c4

4.4. Construction for Security

c5 c20, ¢31

4.5. Security Testing

c5 c24, c31

4.6. Vulnerability Management

c24

5. Software Security Tools

5.1. Security Vulnerability Checking Tools

cb

5.2. Penetration Testing Tools

c4 c31

6. Domain-Specific Software Security

6.1. Security for Container and Cloud

cl-c3

6.2. Security for IoT Software

6.3. Security for Machine Learning-Based
Application

FURTHER READINGS

J. Viega, Building Secure Software: How
to Avoid Security Problems the Right Way,
Addison-Wesley, 2011.

This book introduces the definition of
Software Security and the activities to
develop and maintain secure software.
It includes not only the software devel-
opment process but also the related
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activities such as auditing and the moni-
toring of service.

L. Kohnfelder, Designing Secure Software: A
Guide for Developers, No Starch Press, 2021.

'This book describes security activities in the
software design and implementation phases,
including secure programming and web secu-
rity. It also introduces best practices for secure
software development.

CW. Axelrod,
Secure  Software

Publishers, 2012.

Engineering  Safe  and

Systems, Artech House

This book describes engineering activities to
make software systems safe and secure from a
risk management viewpoint. It introduces risk
assessment and mitigation methods for secu-
rity and safety.
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Software Engineering
Professional Practice
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EEA European Economic Area
European Network
ENAEE | for Accreditation of
Engineering Education
EU European Union
GDPR general'Data Protection
egulation
International
IEA Engineering Alliance
IEC Iélterna'tiqnal Electrotechnical
ommission
IEEE CS | IEEE Computer Society
International Federation for
IFIP . .
Information Processing
IP Intellectual Property
1SO International Organization for
Standardization
NDA Nondisclosure Agreement
UI/UX User Interface/User Experience
WIPO \Cf)Vorld Intellectual Property
rganization
WTO World Trade Organization
INTRODUCTION
The Software Engineering Professional

Practice knowledge area (KA) is concerned
with the knowledge, skills, and attitudes soft-
ware engineers must possess to practice soft-
ware engineering in a professional, responsible
and ethical manner. Because of the widespread

applications of software products in social
and personal life, software product quality
can profoundly affect personal well-being and
societal harmony. Software engineers must
handle unique engineering problems to pro-
duce software with known characteristics and
reliability. This requirement calls for software
engineers who possess the proper knowledge,
skills, training, and experience in professional
practice.

Proféssional practice refers to a way of con-
ducting services to achieve certain standards or
criteria in both the process of performing a ser-
vice and the end product resulting from the ser-
vice. These standards and criteria can include
both technical and non-technical aspects.
The concept of professional practice is espe-
cially applicable to professions with a generally
accepted body of knowledge; code of ethics and
professional conduct with penalties for viola-
tions; accepted processes for accreditation, cer-
tification, qualification, and licensing; and
professional societies to provide and administer
all these. Admission to these professional soci-
eties is often predicated on a prescribed combi-
nation of education and experience.

A software engineer maintains professional
practice by performing all work following
generally accepted practices, standards, and
guidelines set forth by the applicable pro-
fessional society, such as the Association for
Computing Machinery (ACM), Institute for
Electrical and Electronics Engineers (IEEE),
International Federation for Information
Processing (IFIP), IEEE Computer Society
(IEEE CS), International Organization for
Standardization/International Electrotechnical
Commission (ISO/IEC), and ISO/IEC/
IEEE provide internationally accepted soft-
ware engineering standards. All of these

14-1
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Software Engineering
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Figure 14.1. Breakdown of Topics for the Software Engineering Professional Practice KA

standards and guidelines comprise the foun-
dation of the professional practice of software
engineering.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
PROFESSIONAL PRACTICE

The Software Engineering Professional
Practice KA’s breakdown of topics is shown
in Figure 14.1.

'The subareas presented in this KA are pro-
fessionalism, group dynamics and psychology,
and communication skills.

1. Professionalism

A software engineer displays professionalism
notably by adhering to a code of ethics and
professional conduct and to standards and
practices established by the engineer’s profes-
sional community.

One or more professional societies often
represent a professional community, and this
is the case for the engineering community.
Those societies publish codes of ethics and
professional conduct as well as criteria for

admittance to the community. Those criteria
form the basis for accreditation and licensing
activities and may determine engineering
competence or negligence.

As software is used more widely and deeply
in society, stakeholders’ requirements have
likewise become wider and deeper. And as
software has become socially vital, software
engineers have worked to base the user inter-
face/user experience (UI/UX) on socially
inclusive concepts.

1.1. Accreditation, Certification and
Qualification, and Licensing
[1%, cls4-s5, cls10] [2] [4*, c12s10]

(6] [7][8][9]

1.1.1. Accreditation

Accreditation certifies an organization’s com-
petency, authority, or credibility. Accredited
schools or programs have shown that they
adhere to particular standards and maintain
certain qualities. In many countries, the basic
means by which engineers acquire knowledge
is by completing an accredited course of study.
Often, the accreditation process is indepen-
dent of the government and is performed by
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private membership associations. There are
two major global accreditation organizations.
One is the International Engineering Alliance
(IEA), of which the Washington Accord
is a constituent. The other is the European
Network for Accreditation of Engineering
Education (ENAEE), which administers
EUR-ACE®, the label awarded to engineering
degree programs at the bachelor’s and master’s
levels, listed by the European Commission.
Although the accreditation process might
differ for each country and jurisdiction, the gen-
eral meaning is the same. Accreditation of an
institution’s course of study means “the accred-
itation body recognizes an educational institu-
tion as maintaining standards that qualify the
graduates for admission to higher or more spe-
cialized institutions or professional practice.”

1.1.2. Certification and Qualification

ISO/IEC 24773-1 Software and Systems
Engineering — Certification of Software
and Systems Engineering Professionals —
Part 1: General Requirements [8] defines
certification and qualification. ISO/IEC
24773-4 Software and Systems Engineering
— Certification of Software and Systems
Engineering  Professionals — Part 4:
Software engineering [9] elaborates require-
ments and recommendations for certifica-
tion schemes based on ISO/IEC 24773-1,
which are specific to the domain of software
engineering. Certification contains recerti-
fication. Qualification is similar to certifi-
cation but does not require re-qualification.
Certification refers to the confirmation of a
person’s particular characteristics. A common
type of certification is professional certifica-
tion, which certifies a person as being able
to complete an activity in a certain discipline
at a stated level of competency. Professional
certification can verify the holder’s ability to
meet professional standards and to apply pro-
fessional judgment in solving or addressing
problems. Professional certification can also
verify prescribed knowledge, mastery of best
practices and proven methodologies, and pro-
fessional experience.

An engineer usually obtains certifica-
tion by passing an examination in addition
to meeting other experience-based criteria.
Nongovernmental organizations, such as pro-
fessional societies, often administer these
examinations. In software engineering, certi-
fication testifies to one’s capability as a soft-
ware engineer.

'The qualification and certification programs
are designed to confirm a software engineer’s
knowledge of standard software engineering
practices and to advance the engineer’s career.
A lack of qualification or certification does
not exclude the individual from working as
a software engineer. Qualification or certifi-
cation in software engineering is voluntary.
Most software engineers are not qualified or
certified under any program.

1.1.3. Licensing

Licensing authorizes a person to perform cer-
tain activities and take responsibility for
resultant engineering products. The noun
license refers to both that authorization and
the document recording that authorization.
Governmental authorities or statutory bodies
usually issue licenses.

Obtaining a license to practice requires an
individual to meet a certain standard at a cer-
tain ability to practice or operate. Sometimes an
entry-level requirement sets the minimum skills
and capabilities to practice, and as the profes-
sional moves through their career, the required
skills and capabilities change and evolve.

Engineers are licensed to protect the public
from unqualified individuals. In some coun-
tries, no one can practice as a professional
engineer unless licensed; further, no company
may offer “engineering services” unless at
least one licensed engineer is employed there.

1.2. Codes of Ethics and Professional Conduct
[17% cls7-59, ¢10s2, Appendix] [3%, c8]
[4%, cls2] [5%,¢33][10] [11] [13%]

Codes of ethics and professional conduct
describe the values and behavior that an
engineer’s professional practice and decisions
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should embody. The professional community
establishes a code of ethics and professional
conduct. This code exists in the context of
societal norms and local laws and is adjusted
to agree with those norms and laws as needed.
A code of ethics and professional conduct
can offer guidance in the face of conflicting
imperatives. More than one such code serves
the professional engineering community.
For example, in 1999, IEEE CS and ACM
launched a joint Software Engineering
Ethics and Professional Practices Task
Force to publish a code of ethics. In 2018,
ACM published its ACM Code of Ethics
and Professional Conduct, and in 2020,
IEEE published a revision of its Code of
Ethics which was originally approved in
1912. ‘Then, in 2021, IFIP published its
Code of Ethics and Professional Conduct,
adapted from ACM'’s Code of Ethics and
Professional Conduct.

Once established, codes of ethics and pro-
fessional conduct are enforced by the profes-
sion, as represented by professional societies
or by a statutory body. Violations may be acts
of commission, such as concealing inadequate
work, disclosing confidential information,
falsifying information, or misrepresenting
abilities. They may also occur through omis-
sion, including failure to disclose risks or pro-
vide important information, failure to give
proper credit or acknowledge references, and
failure to represent client interests. Violations
of a code of ethics and professional conduct
may result in penalties and possible expulsion
from professional status.

Software engineers shall commit them-
selves to making the analysis, specification,
design, development, testing, and mainte-
nance of software a beneficial and respected
profession. Following their commitment to
the health, safety, and welfare of the public,
software engineers shall adhere to the ten
principles according to IEEE Code of Ethics
adopted by the IEEE Board of Directions,
June 2020.

Since the code of ethics and professional
conduct may be introduced, modified, or
replaced at any time, individual software

engineers are responsible for continuing their
studies to stay current in their professional
practice.

1.3. Nature and Role of Professional Societies
[1*, c2s3] [4%, c1s2] [5% c355s1]

Professional societies comprise a mix of
practitioners and academics. These societies
define, advance, and regulate their corre-
sponding professions. Professional societies
help establish professional standards as well
as codes of ethics and professional conduct.
They also engage in related activities, which
include the following:

¢ Establishing and promulgating a body of
generally accepted knowledge

* Providing the basis for licensing, certi-
fying, and accrediting

¢ Dispensing disciplinary actions

* Advancing the profession through confer-
ences, training, publications, and standards

Participation in professional societies
assists individual engineers in maintaining
and sharpening their professional knowledge
and relevancy and in expanding and main-
taining their professional network.

1.4. Nature and Role of Software Engineering
Standards
[1* ¢10s2] [2] [4*] [5%, c32s6]

Software engineering standards cover a
remarkable variety of topics. They provide
guidelines for the practice of software engi-
neering and for processes to be used during
the development, maintenance, and sup-
port of software. By establishing a common
body of knowledge and experience, soft-
ware engineering standards establish a basis
on which further guidelines may be devel-
oped. Appendix B of this Guide presents
1IEEE, ISO/IEC, and ISO/IEC/IEEE soft-
ware engineering standards that support this
Guide's KAs.

Standards are valuable sources of infor-
mation about requirements and other
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guidance that can support software engi-
neers in everyday activities. Adherence to
standards promotes discipline by enumer-
ating minimal characteristics of products and
practices. That discipline helps mitigate sub-
conscious assumptions or overconfidence in a
design. For these reasons, organizations per-
forming software engineering activities often
include conformance to standards as part of
their organizational policies.

1.5. Economic Impact of Software
[3* c1s1, c10s8] [4*, c1s1] [13*]

The software has economic effects at the
individual, business, and societal levels. For
example, software “success” may be deter-
mined by a product’s suitability for a recog-
nized problem and by its effectiveness when
applied to that problem. At the individual
level, an engineer’s continuing employment
may depend on their ability and willingness
to interpret and execute tasks in meeting cus-
tomers’ or employers’ needs and expectations.
'The customer’s or the employer’s financial sit-
uation may be positively or negatively affected
by software purchases.

At the business level, software properly
applied to a problem can eliminate months of
work and translate to elevated profits or more
effective organizations. Organizations that
acquire or provide successful software may
become a boon to the society in which they
operate by providing both employment and
improved services. However, the software’s
development or acquisition costs can be con-
siderable, like those of any major acquisition.

At the societal level, direct impacts of soft-
ware success or failure include the avoidance
or experience of accidents, interruptions, and
loss of service. Indirect impacts include the
success or failure of the organization that
acquired or produced the software, increased
or decreased societal productivity, harmo-
nious or disruptive social order, and even the
saving or loss of property or life. In addition,
as digitalization progresses, easier and faster
access to the information needed may bring
higher social value.

1.6. Employment Contracts
[1* ¢6,c7] [10] [11] [12]

Software engineering services may be pro-
vided under a variety of client-engineer rela-
tionships. For example, the work may be done
through a company-to-customer supplier
arrangement, an engineer-to-customer con-
sultancy arrangement, a direct-hire, or even
through volunteering. In these situations, the
customer and supplier agree that a product or
service will be provided in return for some con-
sideration. Here, we are most concerned with
engineer-to-customer arrangements and their
attendant agreements or contracts, whether
they are of the direct-hire or consultant variety,
and the issues they typically address.

A common concern in software engineering
contracts is confidentiality. Employers derive
commercial advantage from intellectual prop-
erty (IP), so they strive to protect that prop-
erty from disclosure. Therefore, software
engineers are often required to sign nondis-
closure agreements (NDA) or IP agreements
as a precondition to working. These agree-
ments typically apply to information the
software engineer could gain only through
association with the customer. The terms of
these agreements may extend past the associ-
ation’s termination.

Another concern is IP ownership. Rights
to software engineering assets — products,
innovations, inventions, discoveries, and ideas
— may reside with the employer or customer,
under explicit contract terms or relevant laws,
if those assets are obtained during the software
engineer’s relationship with that employer or
customer. Contracts differ in the ownership
of assets created using non-employer-owned
equipment or information.

Finally, contracts can also specify, among
other elements:

* The location at which work is performed

* Standards to which that work will be held

* The system configuration used for
development

* Limitations of the software engineer’s
and employer’s liability
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* A communication matrix and/or esca-
lation plan

* Administrative details such as rates, fre-
quency of compensation, working hours,
and working conditions

1.7. Legal Issues [1% c6,c11] [2]
[3*, c5s3—c5s4] [4*, c12s3, c1352]

Legal issues surrounding software engi-
neering professional practice include mat-
ters related to standards, trademarks, patents,
copyrights, trade secrets, professional lia-
bility, legal requirements, trade compliance,
cybercrime, and data privacy. It is there-
fore beneficial to know these issues and
their applicability. In addition, legal issues
are jurisdictionally based, so software engi-
neers must consult attorneys who specialize
in the type and jurisdiction of any identified
legal issues.

1.7.1. Standards

Adherence to standards provides a defense
from legal action or allegations of malpractice.

1.7.2. Trademarks

A trademark relates to any word, name,
symbol, or device used in business transac-
tions. It is used “to indicate the source or
origin of the goods.” Trademark protection
protects names, logos, images, and packaging.
However, if a name, image, or other trade-
marked asset becomes a generic term, trade-
mark protection is nullified.

The  World  Intellectual  Property
Organization (WIPO) is the authority
that frames the rules and regulations on
trademarks. WIPO is the United Nations
agency dedicated to protecting the use of
IP as a means of stimulating innovation and
creativity.

1.7.3. Patents

Patents protect an inventor’s right to manu-
facture and sell an idea. A patent consists of

exclusive rights granted by a sovereign gov-
ernment to an individual, group of individ-
uals, or organization for a limited period.
Patents are an old form of idea-ownership
protection and date to the 15th century.

Application for a patent entails keeping and
producing careful records of the process that
led to the invention. In addition, patent attor-
neys help write patent disclosure claims in a
manner most likely to protect the software
engineer’s rights. Note that if inventions are
made during a software engineering contract,
ownership may belong to the employer or cus-
tomer or be jointly held rather than belong to
the software engineer.

Rules vary concerning what is and what
is not patentable. In many countries, soft-
ware code is not patentable, but software
algorithms may be. Existing and filed patent
applications can be found at WIPO.

1.7.4. Copyrights

Most legislations give exclusive rights of an
original work to its creator, usually for a lim-
ited time, enacted as copyright. Copyrights
protect the way an idea is presented — not
the idea itself. For example, they may pro-
tect the particular wording of an account of
a historical event, whereas the event itself is
not protected. Copyrights are long-term and
renewable. As a form of IP, they date to the
17th century.

1.7.5. Trade Secrets

In many countries, an intellectual asset such as
a formula, algorithm, process, design, method,
pattern, instrument, or compilation of informa-
tion may be considered a #rade secret, provided
the asset is not generally known and may pro-
vide a business with some economic advan-
tage. The “trade secret” designation provides
legal protection if the asset is stolen. This pro-
tection is not subject to a time limit. However,
if another party derives or discovers the same
asset legally, then the asset is no longer pro-
tected and the other party will also possess all
rights to use it.
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1.7.6. Professional Liability

It is common for software engineers to be
concerned with professional liability mat-
ters. As engineers provide services to a client
or employer, it is crucial that they adhere to
standards and generally accepted practices
to protect themselves against allegations of
or proceedings related to malpractice, negli-
gence, or incompetence.

For engineers (including software engi-
neers), professional liability is related to product
liability. Under the laws and rules of their juris-
diction, engineers may be held accountable for
failing to fully and conscientiously follow rec-
ommended practice; this is known as neg/igence.
They may also be subject to laws governing
strict liability and implied or express warranty,
where, by selling the product, the engineer is
held to warrant that the product is both suit-
able and safe for use. In some countries (e.g.,
in the US), privity (a doctrine under which one
can sue only the person selling the product) is
no longer a defense against liability actions.

Legal suits for liability can be brought under
tort law in the US, allowing anyone who is
harmed to recover their loss even if no guaran-
tees were made. Because it is difficult to mea-
sure the suitability or safety of software, failure
to take due care can be used to prove negligence
on the part of software engineers. Engineers
can defend themselves against such an allega-
tion by showing that they followed standards
and generally accepted practices in developing
the product to be ready to consult with attor-
neys regarding the standard of care in any rel-
evant jurisdiction to manage risks associated
with product liability or professional liability.

1.7.7. Legal Requirements

Software engineers must operate within local,
national and international legal frameworks.
Therefore, software engineers must know the
legal requirements for the following:

* Registration and licensing, including
examination, education, experience, and
training requirements

* Contractual agreements
* Noncontractual legalities, such as those
governing liability

Basic information on the international
legal framework can be accessed from the

World Trade Organization (WTO).
1.7.8. Trade Compliance

All software professionals must be aware of
legal restrictions on the import, export, or
re-export of goods, services, and technology
in the jurisdictions in which they work. Such
rules often concern export controls and classi-
fication; transfer of goods; acquisition of nec-
essary governmental licenses for foreign use
of hardware and software; services and tech-
nology by sanctioned nations, enterprises, or
individual entities; and import restrictions
and duties. Trade experts should be consulted
for detailed compliance guidance.

1.7.9. Cybercrime

Cybercrime refers to any crime that involves a
computer, computer software, computer net-
works, or embedded software controlling a
system. The computer or software may have
been used in the commission of a crime or
have been the target of the crime. This cat-
egory of crime includes fraud, unauthorized
access, spam, obscene or offensive content,
threats, harassment, theft of sensitive per-
sonal data or trade secrets, and use of one
computer to damage or infiltrate other com-
puters and automated system controls.
Computer and software users commit
fraud by altering electronic data to facilitate
illegal activity. Forms of unauthorized access
include hacking, eavesdropping, and using
computer systems in a way that is concealed
from their owners. Many countries have laws
that specifically cover cybercrimes, but many
do not have effective statutes, making cyber-
crime difficult to prosecute in some cases.
The software engineer has a professional
obligation to consider the threat of cyber-
crime and to consider how the software
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system’s security will protect the software
and user information from accidental or
malicious access, use, modification, destruc-
tion, or disclosure.

Dark patterns are deceptive UI/UX inter-
actions designed to mislead or trick users into
making them do something they may not
want to do. These patterns do not have the
users’ interests in mind and aim for exploit-
ability rather than usability. Creating dark
patterns is not good ethical practice. Software
engineers should be responsible for their
actions and be transparent with users instead
of manipulating them.

1.7.10. Data Privacy

Software engineers should know that data
privacy is a key legal requirement in many
countries. The General Data Protection
Regulation (GDPR), adopted on 14 April
2016, and enforceable since 25 May 2018,
regulates data protection and privacy in the
European Union (EU) and the European
Economic Area (EEA). It also addresses the
transfer of personal data outside the EU and
EEA areas. The GDPR’s primary aim is to
enhance individuals’ control and rights over
their data and to simplify the regulatory envi-
ronment for international business.

The regulation became a model for many
national laws outside the EU, including
the UK, Chile, Japan, Brazil, South Korea,
Argentina, and Kenya. The California
Consumer Privacy Act (CCPA), adopted
on 28 June 2018, has many similarities with

the GDPR.

1.8. Documentation

[1* ¢10s5.8] [3*, c1s5] [4*] [5%, c32]

Providing clear, thorough, and accurate
documentation is the responsibility of each
software engineer. The adequacy of documen-
tation is judged according to different criteria,
based on stakeholder needs. Good documen-
tation complies with accepted standards and
guidelines. In particular, software engineers
should document the following:

* Relevant facts

* Significant risks and trade-offs

* Warnings of undesirable or dangerous
consequences from the use or misuse of
the software

* Relevant information pertaining to attri-
bute, license type, and sourcing

Software engineers should avoid:

* Certifying or approving unacceptable
products

¢ Disclosing confidential information

* Falsifying facts or data

In addition, software engineers and their
managers should provide the following doc-
umentation for other elements of the software
development organization to use:

* Software requirements specifications, soft-
ware design documents, details on the soft-
ware engineering tools used, software test
specifications and results, and details about
the adopted software engineering methods

* Problems encountered during the devel-
opment process

For external stakeholders (customers, users,
others), software documentation should pro-
vide the following:

* Information needed to determine
whether the software is likely to meet
customer and user needs

* Description of safe and unsafe use of
the software

* Explanation of how to protect sensitive
information created by or stored using
the software

* Clear identification of warnings and crit-
ical procedures

Software use may include installation, oper-
ation, administration, and performance of
other functions by various groups of users and
support personnel. If the customer will acquire
ownership of the software source code or the
right to modify the code, the software engineer
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should provide documentation of the func-
tional specifications, the software design, the
test suite, and the necessary operating environ-
ment for the software. Documents should be
kept for at least as long as the software prod-
uct’s life cycle or the time required by relevant
organizational or regulatory requirements.

1.9. Trade-Off Analysis
[3* c1s2,c10] [4*, c7s2, c13s4] [13%
¢9s5.10]

A software engineer often has to choose
between alternative problem solutions. The
outcome of these choices is determined by the
software engineer’s professional evaluation of
each alternative’s risks, costs, and benefits in
cooperation with stakeholders. The software
engineer’s evaluation is called #rade-off analysis.
Trade-off analysis notably identifies competing
and complementary software requirements to
prioritize the final requirements defining the
software to be constructed. (See Requirements
Negotiation in the Software Requirements
KA and Determination and Negotiation of
Requirements in the Software Engineering
Management KA.)

When an ongoing software development
project is late or over budget, a trade-off anal-
ysis is often conducted to decide which soft-
ware requirements can be relaxed or dropped
given the effects thereof. The first step in a
trade-oft analysis is establishing design goals
(see Engineering Design in the Engineering
Foundations KA) and setting the relative
importance of those goals. This permits the
identification of the solution that most nearly
meets those goals; this means that the way the
goals are stated is critically important.

Design goals may include minimizing
monetary cost and maximizing reliability,
performance, or other criteria on various
dimensions. However, it is difficult to formu-
late a trade-off analysis of cost against risk,
especially where primary production and
secondary risk-based costs must be weighed
against each other.

A software engineer must ethically con-
duct a trade-off analysis — notably by being

objective and impartial when selecting cri-
teria for comparing alternative problem solu-
tions and assigning weights or importance
to these criteria. In addition, any conflict of
interest must be disclosed upfront.

2. Group Dynamics and Psychology

Engineering work is often conducted in
teams. A software engineer should interact
cooperatively and constructively with others
to first determine and then meet needs and
expectations. Knowledge of group dynamics
and psychology is an asset when interacting
with customers, coworkers, suppliers, and
subordinates to solve software engineering
problems.

2.1. Dynamics of Working in Teams/Groups
[3* c1s6] [14*, c1s3.5, c10]

Software engineers must work with others.
On the one hand, they work internally in engi-
neering teams; on the other hand, they work
with customers, members of the public, reg-
ulators, and other stakeholders. Performing
teams — those who demonstrate a consistent
quality of work and progress toward goals —
are cohesive and possess a cooperative, honest
and focused atmosphere. Individual and
team goals are aligned so the members natu-
rally commit to and feel ownership of shared
outcomes.

Team members facilitate this atmosphere
by being intellectually honest, using group
thinking, admitting ignorance, and acknowl-
edging mistakes. They share responsibility,
rewards, and workload fairly. They commu-
nicate clearly and directly to one another and
in documents and source code so information
is accessible to everyone. Peer reviews about
work products are framed in a constructive
and nonpersonal way. (See Reviews and Audits
in the Software Quality KA.) This allows all
the members to pursue a continuous improve-
ment and growth cycle without personal risk.
Members of cohesive teams demonstrate
respect for one another and their leader.

One point to emphasize is that software
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engineers must be able to work in multidisci-
plinary environments and varied application
domains. Because software is everywhere,
from phones to cars, it affects people’s lives
far beyond the more traditional concept of
software made for information management
in a business environment.

2.2. Individual Cognition
[3* ¢c1s6.5] [5% c33]

Engineers want to solve problems. Every
engineer strives to solve problems effectively
and efliciently. However, the limits and pro-
cesses of individual cognition affect prob-
lem-solving. Individual cognition plays a
prominent role in problem-solving in soft-
ware engineering, in part because of the
highly abstract nature of software itself.

An individual’s (in particular, a software
engineer’s) ability to decompose a problem
and creatively develop a solution can be inhib-
ited by the following:

* 'The need for more knowledge

* Subconscious assumptions

* 'The volume of data

* Fear of failure or the consequence of failure

* Culture, either of the application domain
or the organization

* Lack of ability to express the problem

* Perceived working atmosphere

* 'The individual’s emotional status

The effects of these inhibiting factors
can be reduced by cultivating good prob-
lem-solving habits that minimize the impact
of misleading assumptions. The ability to
focus is crucial, as is intellectual humility.
Both allow a software engineer to suspend
personal considerations and consult with
others freely, which is especially important
when working in teams.

Engineers use basic methods to facili-
tate problem-solving. (See Problem-Solving
Techniques in the Computing Foundations
KA. Breaking down problems and solving
them one piece at a time reduces cognitive
overload. By taking advantage of professional

curiosity and pursuing continuous professional
development, engineers gain skills and knowl-
edge. Reading, networking, and experimenting
with new tools, techniques and methods are all
valid means of professional development.

2.3. Dealing with Problem Complexity
[3* ¢3s2] [4*, c1s1, c20s1-s5] [5%, c33]

Many, if not most, software engineering prob-
lems are too complex and difficult to address
as a whole or to be tackled by individual soft-
ware engineers. When such circumstances
arise, engineers typically use teamwork
and problem decomposition. (See Problem-
Solving Techniques in the Computing
Foundations KA.)

Teams work together to deal with large,
complex problems by sharing burdens and
drawing on one another’s knowledge and cre-
ativity. When software engineers work in
teams, individual engineers’ different views
and abilities complement one another and
help build a solution otherwise difficult to
come by. Some teamwork examples in soft-
ware engineering are pair programming (see
Agile Methods in the Software Engineering
Models and Methods KA) and code review
(see Reviews and Audits in the Software

Quality KA).

2.4. Interacting with Stakeholders [4%]
'The success of a software engineering endeavor
depends on positive interactions with stake-
holders. Stakeholders should provide support,
information, and feedback at all stages of the
software life cycle. For example, during the
early stages, it is critical to identify all stake-
holders and discover how the product will
affect them to properly capture a sufficient
definition of stakeholder requirements.

In Agile software development, the involve-
ment of stakeholders is even more essential
than in other types of development. First,
during development, stakeholders may pro-
vide feedback on specifications or early ver-
sions of the software, changes of priority,
and clarification of detailed or new software
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requirements. Last, during software mainte-
nance and until the end of product life, stake-
holders can provide feedback on evolving or
new requirements and problem reports so
the software can be extended and improved.
Clearly, regular stakeholder involvement will
lead to a better application. It is vital to main-
tain open and productive communication
with stakeholders during the software prod-
uct’s life cycle.

2.5. Dealing with Uncertainty and Ambiguity
[4%, c4s1, cds4, c11s5, c24s5] [14*, c9s4]

As with engineers in other fields, software
engineers must often deal with and resolve
uncertainty and ambiguities while providing
services and developing products. The soft-
ware engineer must reduce or eliminate any
lack of clarity that is an obstacle to per-
forming work.

Often, uncertainty reflects a lack of knowl-
edge. If that is the case, investigating the
issue by reading formal sources such as text-
books and professional journals, interviewing
stakeholders, or consulting with teammates
and peers can likely solve the problem.

When uncertainty or ambiguity cannot be
overcome easily, software engineers or organi-
zations may regard it as a project risk. When
this is the case, work estimates or pricing are
adjusted to mitigate the anticipated cost of
addressing it. (See Risk Management in the
Software Engineering Management KA.)

2.6. Dealing with Equity, Diversity, and
Inclusivity [4*] [14*, c10s7]
'The equity, diversity, and inclusivity environ-
ment can affect a group’s dynamics. This is
especially true when the group is geograph-
ically separated or communication is infre-
quent because such separation elevates the
importance of each contact. Intercultural
communication is even more difficult if the
difference in time zones makes oral commu-
nication less frequent.
Multicultural environments are preva-
lent in software engineering, perhaps more

than in other engineering fields, because of
the strong trend of international outsourcing
and the easy shipment of software compo-
nents instantaneously around the globe. For
example, it is common for a software project
to be divided into pieces across national and
cultural borders. It is also common for a soft-
ware project team to consist of people from
diverse cultural backgrounds.

For a software project to succeed, team
members must embrace tolerance of dif-
ferent cultural and social norms, acknowl-
edging that not all societies have the same
social expectations. The support of leader-
ship and management can facilitate tolerance
and understanding. More frequent commu-
nication, including face-to-face meetings,
can help mitigate geographical and cultural
divisions, promote cohesiveness, and raise
productivity. Also, communicating with
teammates in their native language could be
beneficial.

In the software industry, gender bias
is still prevalent. Implementing broader
recruiting strategies, specific and measur-
able performance evaluation criteria, and
transparent procedures for assigning com-
pensation can reduce gender inequality in
the software industry. These trends can con-
tribute to building a diverse environment
for all software engineers, regardless of
their gender.

3. Communication Skills

A software engineer must communicate well,
both orally and in reading and writing. To
meet software requirements and deadlines,
engineers must establish clear communica-
tion with customers, supervisors, coworkers,
and suppliers. Optimal problem-solving is
made possible through the ability to inves-
tigate, comprehend and summarize infor-
mation. Customer product acceptance and
safe product use depend on relevant training
and documentation. The software engineer’s
career success is affected by consistently pro-
viding oral and written communication effec-
tively and on time.
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3.1. Reading, Understanding,
and Summarizing  [4%, c4s5] [57, c33s3]

Software engineers must be able to read and
understand technical material. Technical mate-
rial includes reference books, manuals, research
papers, online sources and program source code.

Reading is not only a primary way of
improving skills but also a way of gathering
information for completing engineering goals.
A software engineer sifts through accumu-
lated information, focusing on the pieces that
will be most helpful. Customers may request
that a software engineer summarize the results
of such information-gathering for them, sim-
plifying or explaining it so that they can make
the final choice among competing solutions.

Reading and comprehending source code
are also components of information-gathering
and problem-solving. For example, when
engineers modify, extend or rewrite software,
they must understand both its implementa-
tion, directly derived from the presented code,
and its design, which must often be inferred.
3.2. Writing [3*, c1s5] [4*, c4s2-53]
Software engineers can produce written
products requested by customers or required
by generally accepted practice. These written
products may include source code, software
project plans, software requirement docu-
ments, risk analyses, software design doc-
uments, software test plans, user manuals,
technical reports and evaluations, justifica-
tions, diagrams and charts, and so forth.

Clear, concise writing is important because
writing is often the primary method of com-
munication among relevant parties. In all
cases, written software engineering products
must be accessible, understandable, and rele-
vant to their intended audience.

3.3. Team and Group Communication
[3* c156.8] [4*, c22s3] [5%, c2751]
[14* c10s4]

Effective communication among team and
group members is essential to a collaborative

software engineering effort. Stakeholders
must be consulted; decisions must be made,
and plans must be generated. The greater
the number of team and group members, the
greater the need to communicate.

However, the number of communication
paths grows quadratically with the addition
of each team member. Furthermore, team
members are unlikely to communicate with
anyone perceived to be removed from them by
more than two degrees (levels). This problem
can be more serious when software engi-
neering endeavors or organizations are spread
across national and continental borders.

Some communication can be accom-
plished in writing. Software documentation
is a common substitute for direct interaction.
Email is another, but although it is useful, it
is not always enough. Also, if one receives too
many messages, it becomes difficult to identify
the important information. Increasingly, orga-
nizations are using enterprise collaboration
tools to share information. In addition, elec-
tronic information stores, accessible to all team
members for organizational policies, stan-
dards, common engineering procedures, and
project-specific information, can be beneficial.

Some software engineering teams focus
on face-to-face interaction and promote such
interaction through office space arrange-
ments. Although private offices improve indi-
vidual productivity, other arrangements, such
as co-locating team members in physical or
virtual spaces and providing communal work
areas, can boost collaborative efforts.

3.4. Presentation Skills
[3*% c1s5] [4* c22] [14*, c10s7—c10s8]

Software engineers rely on their presenta-
tion skills during software life cycle pro-
cesses. For example, software engineers may
walk customers and teammates through
software requirements during the phase
and conduct formal requirements reviews.
(See Requirement Reviews in the Software
Requirements KA.) During and after soft-
ware design, software construction, and soft-
ware maintenance, software engineers lead
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reviews, product walkthroughs (see Review
and Audits in the Software Quality KA), and
training. These require the ability to present
technical information to groups and solicit

ideas or feedback.

Therefore, the software engineer’s ability
to convey concepts effectively in a presentation

influences product acceptance, management,
and customer support. It also influences the
ability of stakeholders to comprehend and
assist in the product effort. This knowledge
needs to be archived in slides, knowledge
write-ups, technical white papers, and other
material used for knowledge creation.
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FURTHER READINGS

G.M. Weinberg, The Psychology of Computer
Programming [15].

This was the first major book to address pro-
gramming as an individual and team effort; it
has become a classic in the field.

Kinney and Lange, P.A., Intellectual Property
Law for Business Lawyers [16].

'This book covers IP laws in the US. It not only
talks about what the IP law is; it also explains
why it looks the way it does.
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CHAPTER 15

Software Engineering

Economics

ACRONYMS

IRR Internal Rate of Return

MARR | Minimum Acceptable

Rate of Return

SDLC | Software Development Life Cycle

SPLC Software Product Life Cycle

ROI Return on Investment

SEI Software Engineering Institute

TCO Total Cost of Ownership
INTRODUCTION

Software is ubiquitous and has become essen-
tial for many organizations. It serves organiza-
tions in the following ways:

* as a lever to reach an organization’s busi-
ness or strategic goals;

* as a catalyst of organizational know-how
to improve value.

Both aspects lead directly to critical soft-
ware engineering demands:

* increased productivity

* reduced rework

* reduced development time

¢ shorter maintenance turnaround

* long-term sustainability

* innovation

* competitiveness

* alignment with organizational goals

Software engineering economics helps soft-
ware engineers work in ways that satisfy these
critical demands. The Introduction to SWEBOK
Guide explains that engineering economics is a

key element of all recognized engineering dis-
ciplines. Economics is the science of choice,
not the science of money. Engineering eco-
nomics is the applied microeconomics branch
of economics. It asks the fundamental ques-
tion, “Is it in the best interest of this enterprise
to invest its limited resources in this technical
endeavor, or would the same investment pro-
duce a higher return elsewhere?” Paraphrasing
the definition in [1], engineering is “finding the
balance between what is technically feasible
and what is economically acceptable.”

Software engineering must be value-based.
Neutral — or worse, negative — value from
an organization’s investment in software is not
sustainable. Software engineering economics
aligns software technical decisions with the
organization’s business goals.

“The organization” will at least include the
organization where the software engineer is
employed. However, when the software engi-
neer is involved in work for any third party,
such as through an external digital transfor-
mation contract or other “works for hire” situ-
ation, the business goals of that third party are
also relevant.

In all types of organizations — for-profit,
nonprofit and government — a value-based
approach translates into long-term sustainability.
In for-profit organizations this means achieving a
tangible return on the software investment. In
nonprofit organizations, this means achieving
the maximum benefit for the least cost.

Software technical decisions, like an orga-
nization’s decision to use a preexisting library
or to develop its own, may appear easy from a
purely technical perspective. However, they can
have serious implications for the business via-
bility of a software project as well as the product
itself. Most software practitioners wonder
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Figure 15.1. Breakdown of Topics for the Software Engineering Economics KA

whether such concerns apply to them. But eco-
nomic decision-making is fundamental to engi-
neering. Someone who cannot make decisions
from both a technical and an economic per-
spective cannot be considered a true engineer.

Software engineering economics applies to
decisions across the entire software product
life cycle (SPLC), from the pre-project deci-
sion to develop the software to end-of-life
decisions for existing software. It also applies
to decisions at all levels of technical detail. For
example, all following questions involve an
economic perspective:

* can a client organization benefit from a
digital transformation?

* does a project proposal (a tender) align
with a client’s business goals?

* should certain software functionality be
bought or built?

* should certain requirements be included
in scope or not?

e what is the most efficient, cost-effective
architecture and design?

* what is an optimal load-balancing strategy
for a cloud-based deployment that provides
adequate response time to clients without
incurring unnecessary operational cost?

* how much risk-based testing is enough?

* isitbetter to refactor, redevelop or just live
with code that has high technical debt?

* is it better to focus maintenance on
adding new functionality or on fixing
known defects?

* would the value of early delivery of par-
tial functionality gained by using an
Agile process outweigh the overhead of
rework and continuous testing inherent
in iterative approaches?

The Software Engineering Economics
knowledge area is directly or indirectly related
to all other KAs in this Guide.

This KA also takes the position that the
more traditional, purely financial view of
engineering economics needs to be broadened
[2]. Value does not always derive from money
alone; value can also derive from “unquanti-
fiables” like corporate citizenship, employee
well-being, environmental friendliness, cus-
tomer loyalty and so on. Therefore, software
engineering decisions must also consider rel-
evant unquantifiable criteria.

BREAKDOWN OF TOPICS FOR
SOFTWARE ENGINEERING
ECONOMICS

The breakdown of topics for the Software
Engineering Economics KA is shown in
Figure 15.1.



SOFTWARE ENGINEERING ECONOMICS

1. Software Engineering Economics
Fundamentals
1.1. Proposals [3%, c3pp23-24]
Software engineering decisions begin with
the concept of a proposal — a single, separate
course of action to be considered (e.g., carrying
out a particular software development project
or not). Another proposal could be to enhance
an existing software component; another
might be to redevelop that same software
from scratch. In deciding what algorithm to
use in implementing a certain function, each
candidate considered is a proposal. Every pro-
posal represents a binary unit of choice — the
software engineer either carries out that pro-
posal or chooses not to. Software engineering
economics aims to identify the proposals best
aligned with the organization’s goals.
1.2. Cash Flow [3%, c3pp24-32]
Engineers must evaluate a proposal from a
financial perspective to make a meaningful
decision about it. The concepts of cash flow
instance and cash flow stream describe the
financial perspective of proposals.

A cash flow instance is a specific amount of
money flowing into or out of the organization
at a specific time as a direct result of carrying
out a proposal. For example, in a proposal to
develop and launch product X, the payment
for new computers, if needed, would be an
example of an outgoing cash flow instance.
Money would need to be spent to carry out
that proposal. The sales income from product
X in the 11th month after market launch
would be an example of an incoming cash
flow instance. Money would come in because
of carrying out the proposal.

A cash flow stream is the set of cash flow
instances over time caused by carrying out
that proposal. The cash flow stream is that
proposal’s complete financial view. How
much money goes out? When does it go out?
How much money comes in? When does it
come in? If the cash flow stream for Proposal
A is more desirable than the cash flow stream
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Figure 15.2. A Cash Flow Diagram

for Proposal B, then — all other things being
equal — the organization is financially better
off carrying out Proposal A than Proposal B.
Thus, the cash flow stream is an important
element of engineering decision-making.

A cash flow diagram is a picture of a cash flow
stream. The cash flow diagram quickly sum-
marizes the financial view of a proposal. Figure
15.2 shows an example cash flow diagram.

'The cash flow stream is shown in two dimen-
sions. Time runs from left to right and amounts
of money run up and down. The horizontal
axis is divided into units representing years,
months, weeks, etc., as appropriate for the pro-
posal. Each net cash flow instance is drawn at a
left-to-right position relative to its timing. The
amount of the cash flow instance is shown as
an upward or downward arrow. Upward arrows
indicate that money is coming in (income),
whereas downward arrows indicate that money
is spent (expense). The arrow’s length is usually
proportional to the net amount.
1.3. Time-Value of Money [3*, ¢5-6]
One of the most fundamental concepts in
economics — and therefore, in business deci-
sions — is that money has time-value: Its
value changes over time. A specific amount
of money right now almost always has a value
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different from the same amount at some other
time. This concept has been around since the
earliest recorded human history and is com-
monly expressed as interest.
1.4. Equivalence [3* c7]
Due to the time-value of money, two or more
cash flows are equivalent only when they equal
the same amount of money at the same time.
Therefore, comparing cash flows makes sense
only when they are expressed in the same time
frame. Then, lack of equivalence between the
two cash flows can be determined accurately
and can serve as the basis for choice. The pro-
posal with the highest value in the same time
frame is the most financially desirable.
1.5. Bases for Comparison [3* c8]
A basis for comparison is a shared frame of ref-
erence for comparing two or more cash flow
streams. It uses equivalence to meaningfully

compare two or more proposals. Several bases
for comparison exist, including the following:

* present worth;

 future worth;

* annual equivalent;

* internal rate of return (IRR);

* discounted payback period.
1.6. Alternatives [3* ¢9]
Often, an organization could carry out more
than one proposal if it wanted to. But there
might be important relationships between
proposals that need to be considered. Maybe
Proposal Y can only be carried out if Proposal
X is also carried out. Or maybe Proposal P
cannot be carried out if Proposal Q_is car-
ried out, nor could Q be carried out if P were.
Decisions are easier when there are mutually
exclusive paths — A, or B, or C, or another
project, and no others. This topic explains how
to turn any set of proposals, with their inter-
relationships, into a set of mutually exclu-
sive alternatives. The cash flow stream for any
alternative is the sum of the cash flow streams

for all the proposals it contains. The choice
can then be made among these alternatives.

One special case is known as the do-nothing
Sometimes the best course of
action is not to carry out any of the proposals
being considered. The do-nothing alterna-
tive represents that case. It doesn’t mean do
nothing at all; it means “do something else,
something that’s not in this set of choices.”
The do-nothing alternative should be consid-
ered in most, but not all, situations.

alternative.

1.7. Intangible Assets

Intangible assets, also known as ‘Anowl-
edge assets, are any knowledge that lies in
the non-visible side of an organization but
affects that organization’s financial perfor-
mance. According to International Valuation
Standards (IVS) 210 § 20.1, “an intangible
asset is a non-monetary asset that manifests
itself by its economic properties. It does not
have physical substance but grants rights and
economic benefits to its owner” [4].

'This can include, but is not limited to, pol-
icies, procedures, tools and specifications,
as well as organizational culture, experience
and know-how.

Knowing the organization’s intangible assets
helps the software engineer better understand
how proposals may affect or be affected by orga-
nizational realities. Otherwise, hidden risks
and opportunities that could influence pro-
posals’ success or failure might not be exposed.

The skills needed to consider intangible
assets are the following:

* intangible assets identification and
valuation [Skills Framework for the
Information Age (SFIA), category

Strategy and Architecture, subcategory
Business strategy and planning];

* knowledge management [SFIA, category
Strategy and Architecture, subcategory
Business strategy and planning].

Identifying and characterizing intan-
gible assets are discussed in more detail later
in this KA.
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Figure 15.3. The Engineering Decision-Making Process

1.8. Business Model

Peter Drucker, a founder of modern manage-
ment, defines a good business model as one
that answers these questions [5]:

* Who is the customer?

* What does the customer value?

* How do we make money?

* What is the underlying economic logic
that explains how we can deliver value to
customers at an appropriate cost?

Understanding the organization’s business
model —as well as its intangible assets — helps
the software engineer better understand how
proposals may affect or be affected by orga-
nizational realities. Analyzing the business
model can help the software engineer iden-
tify hidden risks and opportunities that could
influence a proposal’s success or failure [6].

2. 'The Engineering Decision-Making
Process

2.1. Process Overview [3%, c4pp35-36]
Figure 15.3 provides an overview of the engi-
neering decision-making process.

'The process is shown as stepwise and sequen-
tial; however, it can be more fluid in practice.
Steps can be done iteratively, can overlap and
can even occur in different sequences. Just be
sure not to skip any step or execute it poorly.

When the consequences of a wrong deci-
sion are significant, such as a go/no-go deci-
sion for a large project, more time, effort and
care should be spent in this process. All steps
should be completed thoroughly and carefully.
1SO 12207 [7] and ISO 15288 [8] recommend
two additional early activities, which can be
important in high-consequence decisions:

* define the decision management strategy
— this strategy might specify roles,
responsibilities, procedures and tools;

* identify relevant stakeholders, which might
include appropriate subject matter experts.

When the consequences of a wrong deci-
sion are small, such as the consequences of
selecting a minor algorithm or data structure,
less time, effort and care can be spent, but the
same general process is followed. Each step is
discussed in more detail below.

2.2. Understand the Real Problem
[3%, c4pp37-39]

The best solution to a problem can come
only from thoroughly understanding the real
problem to be solved. This step’s key aspects
include the use of an interrogative technique
such as the “5 Whys” technique and a con-
sideration of the broader context surrounding
the problem. The Empathize stage in Design
Thinking [9] (to consider intangible assets)
and looking closely at the organization’s
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business model are examples of considering
that broader context.

2.3. Identify All Reasonable Technically Feasible

Solutions [3%, c4pp40-41]
The goal of engineering decision-making is
to find the best solution. However, the best
solution must first be identified as a candidate
before it can be selected as the best. If the
best solution is not among the set of solutions
being considered, it cannot be selected. The
importance of creative thinking in this step
cannot be overstated when the consequences
of a wrong decision are high.

For some potential solutions, or candidates,
prototyping is a useful way to verify technical
feasibility. Peer review can also help verify
technical feasibility and possibly spur the
identification of even more candidates.

On the one hand, adding candidates
increases the probability that the best one is in
the set. On the other hand, each adds cost to
the decision-making process. Software engi-
neers must use their best judgment in deciding
when they have enough candidates. These
candidates are the “proposals” as defined in
the Fundamentals topic, Section 1.

2.4. Define the Selection Criteria
[3%, c4pp39-40, c26pp441-442]

Engineering decisions almost always consider
the financial perspective. However, other
decision criteria can also be relevant; when
this is the case, the decision is a multiple-at-
tribute decision. For example, an environmen-
tally conscious organization may choose a less
economical solution if it is more eco-friendly.
In many cases, the greater the consequences
of a wrong decision, the more selection cri-
teria need to be considered.

As much as possible, each criterion should
be expressed objectively. Ideally, those objec-
tive terms will be expressed as a monetary value
— but not necessarily. What is the “value” of a
clean river? It might not make sense to value a
river by multiplying the price per kilogram of
fish by an estimate of the number of fish in the

river. Decision criteria that can’t be expressed
objectively are called “unquantifiables,” “irre-
ducibles” or “intangibles.”

Defining the decision criteria can be a sub-
jective task. Too many criteria could make the
analysis unwieldy. On the other hand, too few
criteria might not differentiate well between
proposals and could thus lead to a suboptimal
choice. The potential for a better decision
provided by including more criteria must be
balanced against the extra effort required to
analyze the criteria.

To the extent that money is a selection crite-
rion, the context of the decision will constrain
the decision-maker to a for-profit, nonprofit or
present economy decision analysis, as explained
in topics 3, 4 and 5, later in this KA.

2.5. Evaluate Each Alternative Against the

Selection Criteria [3%, c4pp41-42]
Each alternative is evaluated against each
selection criterion. When a selection crite-
rion involves money, each alternative must
be judged from the same viewpoint. Use the
same basis for comparison (present worth,
future worth, IRR, etc., in for-profit deci-
sions; benefit-cost ratio or cost-effectiveness in
nonprofit decisions, etc.), the same planning
horizon, and consider the same kinds of costs
and incomes. An example decision might be
buying and adapting an off-the-shelf software
product versus building a custom application
from scratch. Considering costs for a longer
time frame for one proposal than for the other
will make the one using the shorter time frame
seem like the better choice even though it
might not be better over the same time frame.

2.6. Select the Preferred Alternative
[3%, c4p42, c26pp447-458]

If the only selection criterion is money, the
alternative with the highest present worth,
future worth, etc., will be chosen. When
there are multiple criteria, a variety of tech-
niques can be used to evaluate the criteria
together. Multiple-attribute decision-making
is detailed later in this KA.
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Engineering decisions are based on esti-
mates (discussed later in this KA). The accu-
racy of an estimate is limited in theory and in
practice, and the degree of inaccuracy depends
on the specifics of the situation [3%, c21pp344-
356]. If the degree of inaccuracy is high enough,
that inaccuracy could change the resulting
decision. The following techniques [3%, ¢23]
can help engineers address these situations:

* consider ranges of estimates;
* perform a sensitivity analysis;
* delay final decisions.

In addition, two categories of techniques
address multiple potential outcomes from
a decision:

* decision-making-under-risk techniques
[3*, c24] are used when probabilities can
be assigned to the different potential
outcomes. Specific techniques include
expected value decision-making, expec-
tation variance and decision-making,
Monte Carlo analysis, decision trees, and
the expected value of perfect information;

* decision-making-under-uncertainty tech-
niques [3% ¢25] are used when probabil-
ities cannot be assigned to the different
potential outcomes. Specific techniques
include the Laplace Rule, the Maximin
Rule, the Maximax Rule, the Hurwicz
Rule and the Minimax Regret Rule.

High-consequence decisions may benefit
from formally recording the selected alterna-
tive and the justification for why that alterna-
tive was selected.

2.7. Monitor the Performance of the Selected
Alternative [3%, c4pp42-43]

Because estimation is a fundamental element
of engineering decision-making, the quality of
the decision depends on the quality of the esti-
mates. Bad estimates can easily lead to bad deci-
sions. The software engineer needs to “close the
loop” on estimates by comparing them to the
actual outcomes. Otherwise, no one will ever

know if the estimates were good [3%, c21pp356-
358]. This also helps improve estimation over
time. Understanding what drives differences
between estimates and actual outcomes helps
engineers refine estimation techniques to pro-
duce more accurate estimates in the future.

3. For-Profit Decision-Making

For-profit decision techniques apply when the
organization’s goal is profit — which is the
case in most companies.

Figure 15.4 shows the process for identi-
tying the financially best alternative out of a set
of proposals. Arranging alternatives in order of
increasing initial investment and then selecting
strictly better candidates means that, all other
considerations being equal, the alternative with
the smaller initial investment will be chosen. The
“Is the next candidate strictly better?” decision is
made in terms of the appropriate basis for com-
parison: present worth, future worth, IRR, etc.

3.1. Minimum Acceptable Rate of Return
[3%, c10pp141-143]

The minimum acceptable rate of return (MARR)
is the lowest IRR the organization would
consider a good investment. Generally, it
would not be wise to invest in an activity
with a return of 10% when another activity
returns 20%. The MARR is a statement that
the organization is confident it can achieve
at least that rate of return. The MARR rep-
resents the organization’s opportunity cost
for investments. By investing in some alter-
native, the organization explicitly decides not
to invest that same money somewhere else. If
the organization is already confident it can
achieve a known rate of return, alternatives
should be chosen only if their rate of return is
at least that high. A simple way to account for
that opportunity cost is to use the MARR as
the interest rate in the basis for comparison.

3.2. Economic Life [3%, c11pp160-164]
When an organization invests in a partic-
ular alternative, money is tied up in that
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Figure 15.4. The For-Profit Decision-Making Process

alternative — so-called frozen assets. The eco-
nomic impact of frozen assets typically starts
high and decreases over time. On the other
hand, operating and maintenance costs tend
to start low and increase over time. An alter-
native’s total cost is the sum of those two
costs. At first, frozen asset costs dominate;
later, operating and maintenance costs dom-
inate. At some point, the sum of the two costs
is minimized; this is the economic life or min-
imum cost lifetime.

3.3. Planning Horizon [3* c11]
To properly compare a proposal with a four-
year life to a proposal with a six-year life, the
economic effects of either cutting the six-year
proposal by two years or investing the profits
from the four-year proposal for another two
years need to be addressed. The planning
horizon, sometimes known as the study period,
is the consistent time frame over which all
proposals in the same decision are considered.
Aspects such as economic life and the time

frame over which reasonable estimates can be
made need to be factored into establishing a
planning horizon. Once the planning horizon
is established, several techniques are available
for putting proposals with different life spans
into that planning horizon.

3.4. Replacement Decisions
[3* c12pp171-178] [8%, ¢9]

A replacement decision happens when an
organization already has a particular asset and
is considering replacing it with a different asset
(e.g., deciding between maintaining and sup-
porting legacy software or redeveloping it from
the ground up). Replacement decisions use the
same for-profit decision process, but there are
two additional important considerations: sunk
cost and salvage value. Replacement does not
necessarily need to involve an entire asset.
To the extent that an asset can be replaced in
smaller increments, the decision-maker can
consider incremental replacement options
among the various economic alternatives.
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3.5. Retirement Decisions

[3% c12pp178-181] [8* ¢9]

Retirement decisions are about getting out of
an activity altogether, such as when a soft-
ware company considers not selling a software
product anymore or a hardware manufacturer
considers not building and selling a partic-
ular computer model any longer. Retirement
decisions can be preplanned or happen spon-
taneously (e.g., when performance targets
are not achieved). Retirement decisions can
be influenced by lock-in factors such as tech-
nology dependency and high exit costs.

3.6. Advanced For-Profit Decision
Considerations [3* ¢13-17]
The above concepts and techniques are often
sufficient to make a good for-profit decision.
However, particularly when the consequences
of a wrong decision are high, additional con-
siderations may need to be factored into the
decision analysis, including the following:

* inflation or deflation;
* depreciation;
* income taxes.

4. Nonprofit Decision-Making

'The for-profit decision techniques don’t apply
when the organization’s goal isn’t profit —
which is the case in government and non-
profit organizations. These organizations
have a different goal, so different decision
techniques are needed. The two techniques
are benefit-cost analysis and cost-effective-
ness analysis (discussed below).

4.1. Benefit-Cost Analysis  [37, c18pp303-311]
Benefit-cost analysis is one of the most
widely used methods for evaluating pro-
posals in nonprofit organizations. A propos-
al’s financial benefits are divided by its costs.
Any proposal with a benefit-cost ratio of
less than 1.0 can usually be rejected without
further analysis because it would cost more

than it would benefit the organization.
Additional considerations are necessary
when two or more proposals are considered
at the same time.

4.2. Cost-Effectiveness Analysis
[3%, c18pp311-314]

Cost-effectiveness analysis shares much of
the philosophy and methodology of bene-
fit-cost analysis. There are two versions of
cost-effectiveness analysis. The fixed-cost
version seeks to maximize benefit given a
fixed upper bound on cost. The fixed-effec-
tiveness version seeks to minimize the cost to
achieve a fixed goal.

5. Present Economy Decision-Making

This subset of engineering decision-making
is called present economy because it does not
involve the time-value of money (future
economy). The two forms of present economy
decisions are presented below.
5.1. Break-Even Analysis [3* ¢19]
Given functions describing the costs of two
or more proposals, break-even analysis helps
engineers choose between them by identi-
tying points where those cost functions are
equal. Below a break-even point, one pro-
posal is preferred, and above that point, the
other is preferred. For example, consider a
choice between two cloud service providers.
One provider has a lower fixed cost per
month with a higher incremental fee for use,
whereas the other has a higher fixed cost per
month with a lower incremental fee for use.
Break-even analysis identifies the use level
where the costs are the same. The organi-
zation’s expected use level can be compared
to the break-even point to identify the low-
er-cost provider.

5.2. Optimization Analysis [3*, ¢c20]
Optimization analysis studies one or more
cost functions over a range of values to find the
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point where overall cost is lowest. Software’s
classic space-time trade-off is an example of
optimization; an algorithm that runs faster
often uses more memory. Optimization bal-
ances the value of faster run time against the
cost of the additional memory.

6. Multiple-Attribute Decision-Making
[3%, c26]

Most topics presented in this KA so far have
discussed decisions based on a single cri-
terion — money. The alternative with the
best present worth, the best incremental
IRR, the best incremental benefit-cost ratio,
etc., is the one selected. Aside from tech-
nical feasibility, money is usually the most
important decision criterion, but it’s cer-
tainly not always the only one. Often, other
criteria, other “attributes,” need to be con-
sidered that can’t be cast in terms of money.
Multiple-attribute decision-making tech-
niques allow nonmonetary criteria to be fac-
tored into the decision.

A variety of techniques can be used to
address multiple criteria, including nonmon-
etary criteria. These techniques fall into two
categories.

6.1. Compensatory Technigues
[3%, c26pp449-458]

Also called single-dimensioned techniques, the
techniques in this category collapse all criteria
into a single figure of merit. This category is
called compensatory because, for any given
alternative, a lower score in one criterion can
be compensated by — traded off against — a
higher score in other criteria. Compensatory
techniques include nondimensional scaling,
additive weighting and analytic hierarchy
process (AHP).

Gilb’s Impact Estimation [11] and the
Software Engineering Institute’s (SEI)
Architectural Tradeoff Analysis Method
(ATAM) [12] are examples of compensa-
tory  multiple-attribute  decision-making
techniques focused on identifying the best
software design.

6.2. Non-Compensatory Techniques
[3%, c26pp447-449]

Also called fully dimensioned techniques, the
techniques in this category do not allow trade-
offs among the criteria. Each criterion is
treated as a separate entity in the selection pro-
cess. Non-compensatory techniques include
dominance, satisficing and lexicography.

7. Identifying and Characterizing
Intangible Assets

The intangible side of an organization is the
valuable knowledge residing within it. This
includes employees’ knowledge about pro-
cesses, structures, procedures, etc. (tacit, or
implicit, knowledge), as well as institutional
knowledge recorded in various organizational
resources (explicit knowledge). These assets
are usually hidden, the way most of an iceberg
is underwater. The intangible assets must be
explicitly considered in many decisions, par-
ticularly when the consequences of a wrong
decision are high for the client, no matter if
the client is internal or external to the orga-
nization for which the software project is
being done.

If these assets are not adequately consid-
ered, software engineers risk developing a
software solution that does not fit the client
organization. Only when the intangible
assets are explicitly considered will the risk
of a poorly fitting software solution be min-
imized. The Strategic Intangible Process
Assets Characterization (SIPAC) method
[13] has been used to good effect to accom-
plish this. SIPAC steps are outlined in the
following subsections.

7.1. Identify Processes and Define Business Goals

Start by understanding the organization’s
business processes and business goals. If the
organization has well-documented processes,
these should be used; otherwise, a deliberate
survey will be necessary.

Business goals can include, but are not lim-
ited to, the following:
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1. maintaining growth and continuity of
the organization;

meeting financial objectives;

meeting responsibility to employees;
meeting responsibility to society;
managing market position.

D

7.2. Identify Intangible Assets Linked with

Business Goals

The next step is to comprehensively iden-
tify the intangible assets. Common examples
are policies, documented business processes,
checklists, lessons learned, templates, stan-
dards, procedures, plans and training mate-
rials. Organizations develop or acquire these
assets to meet their business goals. The assets
represent investments that provide business
value. One effective approach to identifying
an organization’s intangible assets is to start
with a taxonomy such as described in the fol-
lowing reference [14]. The goal is to identify as
many intangible assets as possible that serve
as a lever to achieve the business goals iden-
tified in the previous step. In practice, this
can be an iterative process where reviewing
the already-identified assets reveals the exis-
tence of others. A practical way to do it is by
focusing iteratively on the 11 generic intan-
gible assets (GIAs) described in [6].

Possible GIAs represent all potential parts
of any business that can be involved in a dig-
ital transformation. Focusing on one or more
of them allows the software engineer to better
understand and frame the project’s impact.
Focusing iteratively on the 11 GIAs, the soft-
ware engineer will select the type of GIA to
be considered and, with this, elicit the specific
intangible assets associated with each GIA.

In addition to identifying specific intan-
gible assets, a qualitative relative “importance”
must be added to each one as it is identified.
The importance is a value between 1 and 5 (1
for lower importance and 5 for higher impor-
tance), depending on how well the asset sup-
ports achieving the business objectives. The
intangible assets with the highest importance
are likely the most suitable target for the client
organization.

7.3. Identify Software Products That Support
Intangible Assets

Software products that support specific intan-
gible assets will be part of the digital transfor-
mation proposal to be presented to the client
to help them decide what digital transforma-
tion to implement.

To identify products related to specific
intangible assets, the software engineer can
choose from the following:

* discovering them all at a single time by
using the methodology of Osterwalder
[13], which promotes innovation by gen-
erating a value map with the stakeholders’
emerging needs, mapping the products to
the specific intangible assets;

* listing them if they are known and then
mapping them to specific intangible assets;

* iteratively working with the individual
intangible assets by (1) selecting a spe-
cific intangible asset and (2) identifying
the products, continuing until all specific
intangible assets have been analyzed.

A single product can support more than one
specific intangible asset, and each specific intan-
gible asset can be supported by many products.

7.4. Define and Measure Indicators

This step defines and measures the indica-
tors that will be used to characterize how the
intangible assets (through the software prod-
ucts that support those intangible assets) help
meet business goals through describing, imple-
menting or improving the identified products.
Quality indicators assess specific intangible
asset characteristics or features. Impact indi-
cators assess how much the specific intangible
assets contribute to processes or business goals.

Indicators must be normalized and stan-
dardized to operate correctly.

7.5. Intangible Asset Characterization

Based on the information gathered, the soft-
ware engineer determines the value of the
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identified specific intangible assets based
on their quality and impact. Specific
intangible assets may be characterized in
terms of their impact on business goals
and their quality as organizational assets.
There are three important characteriza-
tion cases:

* case 1: specific intangible assets with both
impact and quality indicators (Warning,
Replaceable, Evolving or Stable);

* case 2: specific intangible assets with only
quality indicators (Acceptable Quality or
Unacceptable Quality);

* case 3: specific intangible assets with only
impact indicators (Acceptable Impact or
Unacceptable Impact).

The three characterization cases are shown
in Figure 15.5. The quadrants represent the
“states” constituting different levels of char-
acterization. 'The lines separating the quad-
rants are thresholds of impact and quality that
define the point at which the impact or quality
of a specific intangible asset may be considered
acceptable or not for each organization. These
thresholds are established for every client
organization and specify what level of orga-
nizational performance, quality, and impact
they will demand from their knowledge/
intangible assets. Thresholds are used to deter-
mine when quality and/or impact are accept-
able or unacceptable. Let’s look at an example
of how to interpret Qval and Ival (both Qval
and Ival will be explained in the following
sections). Assuming, for example, that we are
analyzing the status of an intangible asset with
both quality and impact indicators, and that
Qual is below the quality threshold and Ival
is below the impact threshold. In these cir-
cumstances we would say that the status of the
intangible asset is “warning” as can be seen in
Figure 15.5.

The characterization uses information from
standardized-normalized indicators to assess
the identified intangible assets. This assess-
ment generates a descriptive value that will
determine the asset’s general state of health
from a quantitative perspective.

Quality quantitative assessment

The quality valuation considers only the
indicators of the type quality of an intan-
gible asset and calculates a general valua-
tion of it. To evaluate the subset of quality
indicators, given a set of ¢ quality indica-
tors for an intangible asset n, the valua-
tion of the quality is given according to
Equation 1.

ZilXin
7

Equation 1. Quality Assessment for a
Knowledge Asset

Q?&zl =

Where X" is each of the g normalized indica-
tors of quality that the intangible asset » has.
Above, Qual is the average of the normal-
ized values of the quality indicators of a cor-
responding specific intangible asset.

Impact quantitative assessment

An intangible asset’s impact valuation is an
assessment that considers only the normal-
ized indicators that are classified as “impact”
indicators. To evaluate the subset of impact
indicators, given a set of p normalized impact
indicators for an intangible asset n, the valua-
tion is given as stated in Equation 2:

y4 n
no_ Zi:lzi
Val ~ T

Equation 2. Impact Assessment for a Specific
Intangible Asset

Where Z 1” is each of the p normalized indica-
tors of impact that the knowledge asset n has.

Where Ival is the average of the normal-
ized values of the impact indicators of a corre-
sponding knowledge asset.

Linear value calculation

Finally, the linear value of an intangible asset
characterization is given by the quality and
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impact valuations (Qwal and Ival), following
these rules, assuming that both quality and
impact are equally important, so KAwval (the
valuation of the intangible asset) is given by:

If 3 Qual N 3 Ival, then
Qval + Ival
2

If 3 Qual N 3 Ival, then
KAwval = Qual

KAwal =

If # Qual N 3 Ival, then
KAwval = Ival

This linear value represents an intangible
asset’s general state based on the state of its
indicators. It uses the algebraic average of the
standardized and normalized indicators to
represent the assets’ general state on a scale
[-1, 1] and based on the corresponding inter-
pretation thresholds. If no threshold is explic-
itly mentioned, the linear value is interpreted
as follows, if the value is 0, then the intan-
gible asset is on the target, if the value is 1, it
means that the intangible asset is 100% over
the target and if the value is -1 then the intan-
gible asset is -100% under the target.

7.6. Link Specific Intangible Assets with the
Business Model

Visualizing the client business model,
enriched with the intangible assets status
allocated into that model, gives organiza-
tional leadership a clear understanding of the
important relationships among proposed soft-
ware solutions, intangible assets, the business
model and the business goals. The software
engineer can clearly show which proposed
solution generates the most value for the busi-
ness. An example is shown in [6].

7.7. Decision-Making

The next step in the decision-making process
is to prioritize and choose the software prod-
ucts that interest the client organization most.
There is no simple rule; several criteria must
be considered:

* the intangible asset’s impact on business
goals (defined in previous steps);

* the characterization reached (defined in
previous steps);

* the impact of intangibles assets status on
the competitors of the organization under
improvement;

* the intangible asset’s impact on the busi-
ness model;

* cost to implement the products;

* time to implement the products;

* complexity of the products.

All criteria must be considered to decide
what software products should be developed
for the client organization, making this a
multiple-attribute decision. (See 6, Multiple-
Attribute Decision-Making.)

Upon considering all relevant criteria,
the organization can see the risks of imple-
menting a software solution to automate pro-
cesses that are either not very valuable or not
in good shape. Instead, the software engi-
neer can offer, in a transparent way, proposals
that better satisfy the organization’s busi-
ness needs.

This approach can be useful whenever an
engineering decision needs to be made, but it
is particularly critical in the pre-project stage
when there is a need to present the client
organization with proposals that are best for
business value.
8. Estimation [3* c21-26]
An estimate analytically predicts some quan-
tity, like a project’s size, cost or schedule.
Many other quantities are also estimated in
software engineering, such as the average
number of active client sessions a cloud ser-
vice needs to support, the number of times a
function will be called during execution of a
section of code, or the number of delivered
defects in a software product.

Software engineers do not estimate purely
for the sake of estimating. Software engi-
neers estimate to make decisions when critical
quantities are unknown. For example, a deci-
sion to buy a functionality or build it within
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Figure 15.5. Extended Characterization of Specific Intangible Assets

the organization would certainly be based on
the cost of building it. But the actual cost of
building it cannot be precisely known until
the organization does build it. Key informa-
tion needed to make engineering decisions is
usually not known when those decisions need
to be made. Instead, decisions are based on
estimates. Behind every estimate is one or
more decisions.

Given that estimates are predictions, there
is a nonzero probability that the actual out-
come will differ from the estimate. All esti-
mates are inherently uncertain. Sometimes,
the uncertainty is large, and sometimes it is
small. But it is always there. Fortunately, esti-
mates need not be perfect; they need only to
be good enough to lead the decision-maker to
make the right decision.

The Software Engineering Code of Ethics
and Professional Practice [16] states, “3.09.
Ensure realistic quantitative estimates of cost,
scheduling, personnel, quality and outcomes

on any project on which they work or propose
to work and provide an uncertainty assess-
ment of these estimates” (underlining added
for emphasis). (See [3% c21pp358-361].)

Estimation is covered extensively in [17],
[18] and [3¥]. Several general techniques exist,
and each is overviewed here. All specific esti-
mation techniques use one or a combination
of these general techniques.

8.1. Expert Judgment [3%, c22pp367-369]
In expert judgment estimation, the estimate
is based purely on the estimator’s professional
opinion. It is the simplest technique and is
always available, and it is particularly useful
when the other techniques aren’t available. The
downside is that this technique produces the
least accurate estimates. Multiple expert judg-
ment estimates can be fed into group estimation
processes like Wide Band Delphi and Planning
Poker to produce more accurate estimates.
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8.2. Analogy [3% c22pp369-371]
Estimation by analogy assumes that if the
thing estimated is similar to something
already known, then the estimate for the
new thing can be based on the actual result
for the similar thing, with allowances for rel-
evant differences. The steps in estimation by
analogy are as follows:

—_

Understand the thing to be estimated.

2. Find a suitable analogy for which actual
results are known.

3. List differences between the thing being
estimated and the analogy that could sig-
nificantly affect the outcome.

4. Estimate the magnitude of each identi-
fied difference.

5. Build the estimate from the analogy’s

actual result and adjustments for the

identified differences.

Estimation by analogy produces more
accurate results than expert judgment, and it
is still relatively quick and easy. On the other
hand, an appropriate analogy for which accu-
rate results are known must be available for
this approach to work.
8.3. Decomposition [3%, c22pp371-374]

Sometimes called bottom-up estimation, the
steps in estimation by decomposition are:

1. Break the thing to be estimated into suc-
cessively smaller pieces until the smallest
pieces can be reasonably estimated.

2. Estimate those smallest pieces.

3. Add up the estimates for the smallest
pieces to build the estimate for the whole.

4. If the estimates for the smallest pieces don’t
include allowances for significant cross-cut-
ting factors, then find a way to address
those factors. For example, when estimating
a software project from its design, the esti-
mates for the design elements may not
include allowances for requirements work,
integration work, testing work and user
documentation work.

Estimation by decomposition assumes
that overestimates of lowest-level pieces will
cancel out corresponding underestimates of
other pieces and lead to a more accurate esti-
mate of the whole. The primary disadvantages
are the following:

* it can be a lot more work than any other
technique;

* if the bottom-level estimates are biased
either high or low, the canceling effect
doesn’t happen.

8.4. Parametric [3%, c22pp374-377]
Also called estimation by statistical methods,
parametric estimation takes advantage of a
known, mathematical relationship between
the thing being estimated and one or more
observable factors about that thing, like cal-
culating the cost to build a building as a func-
tion of its floor space. The estimation model is
an equation: First, count the observable fac-
tors, and then plug them into the equation to
get the resulting estimate.

Parametric estimates are typically the most
accurate, the most defendable and the easiest
to use, provided the equation has been devel-
oped and validated. The disadvantage is that
developing and validating such an equation
requires an adequate base of accurate histor-
ical data along with some nontrivial mathe-
matics and statistics.

8.5. Multiple Estimates
[3%, c22pp377-379]

When the consequences of a wrong decision
are small, it can be acceptable to base the deci-
sion on a single estimate from a single estimator
using a single estimation technique. However,
when the consequences of a wrong decision are
significant, investing extra effort in developing
more than one estimate can be worthwhile.
To use this approach, engineers estimate the
same thing using different techniques, pos-
sibly by different estimators. Then, they look
for convergence or divergence among those
multiple estimates. Convergence suggests
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the individual estimates are probably accu-
rate, and any of them could be used to make
the decision. Divergence suggests that one or
more important factors might have been over-
looked. Finding the factors that caused the
divergence and reestimating to produce con-
verging results often lead to a better estimate
and thus a better decision.

9. Practical Considerations
9.1. Business Case

The business case is the consolidated, doc-
umented information summarizing and
explaining a recommended business decision
from different perspectives (cost, benefit, risk
and so on) for a decision-maker and other rel-
evant stakeholders. It’s used to assess a prod-
uct’s potential value, which can be used as a
basis for an investment decision.

9.2. Mulﬁple—Currency Analysis

When a decision analysis involves cross-
border finances, currency exchange rate varia-
tions may need to be considered. This is often
done using historical data.

9.3. Systems Thinking

The ecosystem in which software engineers
develop their professional life is complex. To
understand the whole picture around a client
organization and form a holistic view of the
scenarios they analyze, software engineers
can use systems thinking methodologies.
This approach helps the software engineer
create a complete set of possible scenarios in
which the software to be provided could be
useful and, with this information, explain
to the client how the software solution can
be a value provider for the organization.
Sources for system thinking methodologies
are [19] and [20]. A way to connect systems
thinking methodologies with the devel-
opment of a business model to understand
the pillars of the client organization can be
reached in [21].

10. Related Concepts

This topic includes concepts the software
engineer may want to bear in mind.

10.1. Accounting [3% c15pp234-245]
Accounting is part of finance. It allows people
whose money is used to run an organization
to know the results of their investment: Did
they get the profit they were expecting? In for-
profit organizations, this relates to the tangible
return on investment (ROI), while in nonprofit
and governmental organizations, as well as for-
profit organizations, it translates into sustain-
ably staying in business. Accounting’s primary
role is to measure the organization’s actual
financial performance and to communicate
financial information about a business entity
to stakeholders, such as shareholders, finan-
cial auditors and investors. Communication
generally takes the form of financial state-
ments showing the economic resources to be
controlled. The right information — relevant
and reliable to the user — must be presented.
Information and its timing are partially gov-
erned by risk management and governance
policies. Accounting systems are also a rich
source of historical data for estimating.

Software engineers must be conscious of

the software’s importance as a driver of busi-
ness accounts in the digital era.
10.2. Cost and Costing [3% c15pp245-259]
A cost is the money used to produce some-
thing and, hence, is no longer available for
use. In economics, a cost is an alternative that
is given up as a result of a decision.

Sunk cost refers to unrecoverable expenses
that have occurred, which can cause emotional
hurdles looking forward. From a traditional
economics viewpoint, sunk costs should not be
considered in decision-making. Opportunity
cost is the cost of an alternative that must be
forgone to pursue another alternative.

Costing is part of finance and product
management. It is the process of determining
the cost based on expenses (e.g., production,
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software engineering, distribution, rework)
and on the target cost to be competitive and
successful in a market. The target cost can be
below the actual estimated cost. The plan-
ning and controlling of these costs (called cost
management) is important and should always
be included in costing.

An important concept in costing is the
total cost of ownership (TCO). This holds
true especially for software because there are
many not-so-obvious costs related to SPLC
activities after initial product development.
TCO for a software product is defined as the
total cost for acquiring that product, acti-
vating it and keeping it running. These costs
can be grouped as direct and indirect costs.
TCO is an accounting method that is crucial
in making sound economic decisions.

10.3. Finance

Finance is the branch of economics concerned
with allocating, managing, acquiring and
investing resources. Finance is an element of
every organization, including software engi-
neering organizations.

'The field of finance deals with the concepts
of time, money, and risk, and how they are
interrelated. It also deals with how money is
spent and budgeted. Corporate finance is con-
cerned with funding an organization’s activ-
ities. Generally, this involves balancing risk
and profitability while attempting to maxi-
mize an organization’s wealth and the value
of its stock. This applies primarily to for-profit
organizations but also to nonprofit organiza-
tions. The latter needs finances to ensure sus-
tainability, if not to make a tangible profit. To
do this, an organization must:

* identify organizational goals, time hori-
zons, risk factors, tax considerations and
financial constraints;

* identify and implement the appropriate
business strategy, such as which port-
folio and investment decisions to take,
how to manage cash flow and where to
get the funding;

* measure financial performance, such as

cash flow and ROI, and take corrective
actions in case of deviation from objec-
tives and strategy.

Provided that many organizations use
software development or acquisition to stay
competitive, the software engineer must be
conscious of the importance of software to
business finances.

10.4. Controlling

Controlling is the element of finance and
accounting that involves measuring and
correcting performance. It ensures that an
organization’s objectives and plans are accom-
plished. Controlling cost is a specialized
branch of controlling used to detect variances
of actual costs from planned costs.

In software engineering, this concept is
referred to as processes and products con-
trol and evolution. While the organization
is seen as an entity with its own goals, and
control of the organizational goals is seen as
separate, software engineers must consider
control of the organization part of their job
by ensuring alignment of their software with
business goals.

10.5. Efficiency and Effectiveness
[10%, c22pp422-23]

Economic efficiency of a process, activity or task
is the ratio of resources consumed to resources
expected to be consumed. Efficiency means
“doing things right.” An efficient behavior,
like an effective behavior, delivers results and
minimizes effort. Factors affecting efficiency
in software engineering include product com-
plexity, quality requirements, time pressure,
process capability, team distribution, inter-
ruptions, feature churn, tools and program-
ming language.

Effectiveness is about having impact. It is
the relationship between achieved objectives
and defined objectives. Effectiveness means
“doing the right things.” Effectiveness looks
only at whether defined objectives are reached
— not at how they are reached.
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10.6. Productivity [10%, c23pp689]
Productivity is the ratio of output to input
from an economic perspective. Quéput is the
value delivered. Input covers all resources
(e.g., effort) spent to generate the output.
Productivity combines efficiency and effec-
tiveness from a value-oriented perspective.
Maximizing productivity is about generating
the highest value with the lowest resource
consumption.

The Guide to the Project Management
Body of Knowledge [23] defines rework as
“action taken to bring a defective or noncon-
forming component into compliance with
requirements or specifications.” It is worth
noting that most software organizations are
unaware that the single largest resource con-
sumer is, in fact, rework. In many software
projects the cost of rework is higher than
the cost of all other project activities com-
bined. The most effective way to increase
productivity can be to simply reduce rework.
Reducing software project rework involves
proactive quality improvement actions (see
Chapter 12, Software Quality KA) that either
a) identify defects earlier so those defects can
be fixed at lower resource cost, b) reduce the
degree of defect cost growth (e.g., intention-
ally simpler code is easier to modify than
complex code so actively managing and con-
trolling code complexity reduces the cost of
defect repair), and c) prevent defects in the
first place by, for example, using appropriate
templates and checklists in development and
maintenance.

10.7. Product or Service

A product is a tangible economic good (or
output) created in a process that transforms
product factors (or inputs) into an output.
A service is an intangible resource, like con-
sulting. When sold, a product or service is a
deliverable that creates both a value and an
experience for its consumers. A product or
service can be a combination of systems, solu-
tions and materials delivered internally (e.g.,
an in-house IT solution) or externally (e.g., a

software application), either as is or as a com-
ponent for another product (e.g., embedded
software).
10.8. Project [22% c2s2.4]
A project is “a temporary endeavor undertaken
to create a unique product, service, or result”
[24]. In software engineering, different
project types are distinguished (e.g., product
development, outsourced services, software
maintenance, service creation, and so on).
During its life cycle, a software product may
require many projects. For example, during
the product conception phase, a project might
be conducted to determine customer need and
market requirements; during maintenance,
a project might be conducted to produce the
next version of a product.

10.9. Program

A program is “a group of related projects, sub-
programs, and program activities managed
in a coordinated way to obtain benefits not
available from managing them individually”
[24]. Programs are often used to identify and
manage different deliveries to a single customer
or market over a time horizon of several years.

10.10. Portfolio

Portfolios are “projects, programs, sub-portfo-
lios, and operations managed as a group to
achieve strategic objectives” [24]. Portfolios
are used to group and then manage simul-
taneously all assets within a business line
or organization. Having an entire portfolio
to consider helps ensure that the broader
impacts of decisions are considered, such as
the decision to allocate resources to a specific
project, which means that the same resources
will not be available for the other projects in
the portfolio.

10.11. Product Life Cycle

An SPLC includes all activities needed to
define, build, operate, maintain and retire



SOFTWARE ENGINEERING ECONOMICS 15-19

a software product or service and its variants.
The SPLC activities of “operate,” “maintain”
and “retire” occur in a much longer time frame
than initial software development (the soft-
ware development life cycle (SDLC)). (See
Software Life Cycle Models in the Software
Engineering Process KA.) Also, the oper-
ate-maintain-retire activities of an SPL.C con-
sume more total effort and other resources
than the SDLC activities. (See Majority
of Maintenance Costs in the Software
Maintenance KA.) The value contributed by
a software product or associated services can
be objectively determined during the “operate
and maintain” time frame. Software engi-
neering economics should be concerned with
all SPLC activities, including activities that
take place after the initial product release.

10.12. Project Life Cycle

Project life cycle activities typically involve
five process groups: Initiating, Planning,
Executing, Monitoring and controlling, and
Closing [23]. (See the Software Engineering
Management KA.) The activities within a
software project life cycle are often inter-
leaved, overlapped and iterated in various ways
[20%, ¢2] [25]. (See the Software Engineering
Process KA.) For instance, Agile product
development within an SPLC involves mul-
tiple iterations that produce increments of
deliverable software. An SPLC should include
risk management and synchronization with
different suppliers (if any) while providing
auditable decision-making information (e.g.,
to comply with product liability needs or gov-
ernance regulations). The software project
life cycle and the SPLC are interrelated; an
SPLC may include several SDLCs.

10.13. Price and Pricing [10% c23s23.1]
A price is what is paid in exchange for a good
or service. Price is a fundamental aspect of

financial modeling and is one of the four Ps
of the marketing mix. The other three Ps are
product, promotion and place. Price is the only
revenue-generating element among the four
Ps; the rest are costs.

Pricing is an element of finance and mar-
keting. It determines what a company will
receive in exchange for its products. Pricing
factors include manufacturing cost, market
placement, competition, market condition
and product quality. Pricing applies prices
to products and services based on factors
such as fixed amount, quantity break, pro-
motion or sales campaign, specific vendor
quote, shipment or invoice date, combina-
tion of multiple orders, service offerings, and
many others. The consumer’s needs can be
converted into demand only if the consumer
has the willingness and capacity to buy the
product. Thus, pricing is crucial in marketing.
Pricing is initially done during the project ini-
tiation phase and is a part of the “go” deci-
sion-making process.

10.14. Prioritization

Prioritization involves ranking alternatives
based on common criteria to deliver the best
value. For example, in software engineering
projects, software requirements are often
prioritized to deliver the most value to the
client within the constraints of schedule,
budget, resources, and technology, or to
allow the team to build the product in
increments, where the first increments pro-
vide the highest value to the customer. (See
Requirements Prioritization in the Software
Requirements KA and Software Life Cycle
Models in the Software Engineering
Process KA.) Prioritizing alternatives is at
least implicit in the discussion in 2.6., Select
the Preferred Alternative, but is explicit
when a compensatory technique is used,
as described in 7.6., Multiple-Attribute
Decision-Making.
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MATRIX OF TOPICS VS. REFERENCE MATERIAL

2.4. Define the Selection Criteria

c26pp441-442

Tockey 2005 Sommerville | Fairley 2009
[3*] 2016 [10*] [22%]
1. Software Engineering Economics
Fundamentals
1.1. Proposals c3pp23-24
1.2. Cash Flow c3pp24-32
1.3. Time-Value of Money c5-6
1.4. Equivalence c7
1.5. Bases for Comparison c8
1.6. Alternatives c9
1.7. Intangible Assets
1.8. Business Model
2. The Engineering Decision-
Making Process
2.1. Process Overview c4pp35-36
2.2. Understand the Real Problem c4pp37-39
%{iﬁ]g’;n;;fi ;Zfal; i{msanable Technically cApp40-41
c4pp39-40,

2.5. Evaluate Each Alternative Against the
Selection Criteria

c4pp41-42

2.6. Select the Preferred Alternative

c4p42,
c26pp447-458

2.7. Monitor the Performance of the Selected
Alternative

c4pp42-43

3. For-Profit Decision-Making

3.1. Minimum Acceptable Rate of Return

c10pp141-143

3.2. Economic Life

c11ppl60-164

3.3. Planning Horizon

cll

3.4. Replacement Decisions

c12pp171-178 ¢9

3.5. Retirement Decisions

c12pp178-181 ¢9

3.6. Advanced For-Profit Decision Considerations

c13-17

4. Nonprofit Decision-Making

4.1. Benefit-Cost Analysis

c18pp303-311

4.2. Cost-Effectiveness Analysis

c18pp311-314

5. Present Economy Decision-Making
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5.1. Break-Even Analysis c19

5.2. Optimization Analysis c20

6. Multiple-Attribute Decision-Making

6.1. Compensatory Techniques c26pp449-458
6.2. Non-Compensatory Techniques c26pp447-449

7. 1dentifying and Characterizing
Intangible Assets

7.1. Identify Processes and Define Business Goals

7.2. Identify Intangible Assets Linked with
Business Goals

7.3. Identify Software Products That Support
Intangible Assets

7.4. Define and Measure Indicators

7.5. Intangible Asset Characterization

7.6. Link Specific Intangible Assets with the
Business Model

7.7. Decision-Making

8. Estimation

8.1. Expert Judgment c22pp367-369
8.2. Analogy c22pp369-371
8.3. Decomposition c22pp371-374
8.4. Parametric c22pp374-377
8.5. Multiple Estimates c22pp377-379

9. Practical Considerations

9.1. Business Case

9.2. Multiple-Currency Analysis

9.3. Systems Thinking

10. Related Concepts
10.1. Accounting c15pp234-245
10.2. Cost and Costing c15pp245-259

10.3. Finance

10.4. Controlling

10.5. Efficiency and Effectiveness c22pp422-23

10.6. Productivity c23pp689

10.7. Product or Service

10.8. Project c2s2.4
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10.9. Program

10.10. Portfolio

10.11. Product Life Cycle

10.12. Project Life Cycle

10.13. Price and Pricing

c23s23.1

10.14. Prioritization

FURTHER READINGS

Project Management Institute, 4 Guide to
the Project Management Body of Knowledge
(PMBOK® Guide) [24].

The PMBOK® Guide provides guidelines for
managing individual projects and defines
project management-related concepts. It
also describes the project management life
cycle and its related processes, as well as
the project life cycle. It is a globally rec-
ognized guide for the project management
profession.

Project Management Institute and IEEE
Computer Society, Software Extension fo
the Guide to the Project Management Body of
Knowledge (SWX) [25].

SWX provides adaptations and extensions to
the generic practices of project management
documented in the PMBOK® Guide for man-
aging software projects. The primary con-
tribution of this extension to the PMBOK®
Guide is its description of processes that are
applicable to managing adaptive life cycle
software projects.

B.W. Boehm,
Economics [26].

Software  Engineering

'This book is classic reading on software engi-
neering economics. It provides an overview
of business thinking in software engineering.
Although the examples and figures are dated,
it is still worth reading.

C. Ebert and R. Dumbke,
Measurement [27].

Software

This book provides an overview of quantita-
tive methods in software engineering, starting
with measurement theory and proceeding
to performance management and business
decision-making.

DJ. Reifer, Making the Software Business
Case: Improvement by the Numbers [28].

'This book is classic reading on making a busi-
ness case in software and I'T industries. Many
useful examples illustrate how the business
case is formulated and quantified.
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CHAPTER 16

Computing Foundations

ACRONYMS FPU Floating Point Unit
HCI Human-Computer Interface
ADT Abstract Data Type HMPP Hybrid Multicore Parallel
Al Artificial Intelligence Programming
ANSI American National Standards HTTP Hyper Text Transfer Protocol
Institute IPC Inter-Process Communication
AVL Tree | Adelson-Velskii and Landis Tree ISA Instruction Set Architecture
BCNF Boyce-Codd Normal Form MIMD Multiple Instruction, Multiple
BST Binary Search Tree Data Stream
Common Application MISD Multiple Instruction, Single
CASE Service Element Data Stream
CDRAM | Cache DRAM Motor Industry Software
Cac c oo - MISRA Reliability Association
CERT R::sn;g E’;eerTeI;;inneermg ML Machine Learning
CISC Complex Instruction NAS Network Access Storage
Set Computer (0N Open Systems Interconnection
CRUD Create, Read, Update, Delete PDU Protocol Data Unit
CUDA Compute Unified Device RDBMS | Relational DBMS
Architecture -
: : RDM Runtime Database Manager
DAG Directed Acyclic Graph RDRAM | Rambus DRAM
DAL Database Access Language RIsc Reduced Instraction
DAS Direct Access Storage Set Computer
DBCS Double Byte Character Set RTOS Real Time Operating System
DCL Data Control Language SAN Storage Area Network
DDL Data Definition Language SASE Specific Application
DDR Service Element
SDRAM Double Data Rate SDRAM SDRAM Synchronous DRAM
DKNF Domain/Key Normal Form SEI Software Engineering Institute
DMA Direct Memory Access SIMD Single Instruction, Multiple
DML Data Manioalation L Data Stream
ata Vanipuation -anguage SISD Single Instruction, Single
EDW Enterprise Data Warehouse Data Stream
FCFS First Come, First Served SQL Structured Query Language
FIFO First In, First Out SRTF Shortest Remaining Time First
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Figure 16.1. Breakdown of Topics for the Computing Foundations KA

Software engineers must internalize the differ-
ences between their role and that of a computer
programmer. A typical programmer converts a
given algorithm into a set of computer instruc-
tions, compiles the code, creates links with rel-
evant libraries, binds, loads the program into
the desired system, executes the program, and
generates output.

On the other hand, a software engineer
studies the requirements, architects and
designs major system blocks, identifies optimal
algorithms, communication mechanisms, per-
formance criteria, test and acceptance plans,
maintenance methodologies, engineering pro-
cesses and methods appropriate to the applica-
tions and so on.

The key purpose of the Software
Engineering Body of Knowledge (SWEBOK)
Guide is to identify the areas of knowledge
that professional software engineers must
know, according to practicing subject matter
experts worldwide.

Software engineers are expected to have
deep and broad knowledge of various con-
cepts of computer science and be able to apply
them. These concepts form the foundations of
computing.

COMPUTING FOUNDATIONS

'The breakdown of topics for the Computing
Foundations knowledge area (KA) is shown
in Figure 16.1.

1. Basic Concepts of a System or Solution

[6%, C10]

'The problem to be solved has to be analyzed in
greater detail for functional requirements, user
interactions, performance requirements, device
interfaces, security, vulnerability, durability
and upgradability. A system is an integrated
set of subsystems, modules and components
that perform specific functions independently.
Delineating the problem and solution is critical.

An engineered system ensures the subsys-
tems are designed to be:

* Modular: Each subsystem (module) is
uniform (similar size).

* Cohesive: Each subsystem performs one
specific task. Ideally, systems should be
highly cohesive.

* Coupled: Each subsystem functions inde-
pendently, as much as possible. Ideally,
systems should be loosely coupled.



The subsystems may further be broken
down into modules and sub-modules that also
exhibit these characteristics.

'The system may include both software and
hardware subsystems. The hardware must
be designed to support the software subsys-
tems and satisfy all user requirements, espe-
cially user interfaces (input/output (1/0)) and
performance.

This section focuses on designing and
building engineered software subsystems.

The applications may require systems that
are manual or fully or semiautomated; real-
time, online or offline; distributed or single-
location, and so on.

The software subsystems’ architects have
to consider appropriate technology, tools,
data structure, operating system, database (if
required), user interfaces, programming lan-
guages, and algorithms for computing solu-
tions optimally among others.

Software requirements, architecture, design,
construction, testing, methods and models,
quality assurance, and security are discussed in
detail in other chapters as independent KAs.

The Computing Foundations KA focuses
on explaining the key computer science con-
cepts a software engineer has to know well to
architect, design, construct, deploy and main-
tain useful, high-quality software subsystems.

2. Computer Architecture and

Organization [6%, C6]
Computer architecture refers to the com-
ponents of a computer system designed for
specific purposes. Computer organization
explains how the units within the system con-
nect and interact to achieve those purposes.

System architects must analyze the appli-
cation for which the computer system is to
be designed or developed; identify the crit-
ical components, including 1/0O devices
required (along with throughput), types and
quantum of memory, processing power, and
coprocessors required; and choose or design
appropriate computer architecture and orga-
nization. Contingencies should be built in for
the resources required.
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This content area discusses various com-
puter architectures and organizations a system
or software architect needs to know.
2.1. Computer Architecture [8*, C1.1]
Architecture describes what the computer
or system does, and its components, such as
memory, data storage devices, graphics, and
the computers or processor’s computing power.
A computing system typically has memory, /O
devices and a central processing unit (CPU).

These components are connected through
physical signallines called a bus. Typically, three
types of buses are used for specific purposes:

» Address bus, which addresses or accesses
a specific memory location or I/O device.

e Data bus, which stores (writes) or
retrieves (reads) data to and from the
memory location.

* Control bus, which provides control sig-
nals from the CPU to I/O devices (read
or write, enable or disable, interrupt,
status, reset, etc.).

Software engineers are expected to know
the details of the functioning and timing
of different types of buses — first-gener-
ation, second-generation and third-gen-
eration buses; internal and external buses;
serial and parallel buses; simplex, full-duplex
and half-duplex buses; Mil-Std-1553Bbus,
Wishbone buses, etc.

2.2. Types of Computer Architectures

[8* C4.14,C5]
2.2.1. Von Neumann Architecture  [8*,C1.9]
John von Neumann designed a computer

system architecture with five essential com-
ponents as shown in Figure 16.2:

* Arithmetic logic unit (ALU) that per-
forms arithmetic and logic computation.

* Memory where the program and data are
loaded and executed (program and data
reside in the same memory space).
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Input Devices

Control Unit

Figure 16.2. Computer Architecture

* Input devices (e.g., keyboard, mouse,
serial port, hard disk) that allow the user
to provide inputs and control commands.

* Output devices (e.g., monitor, printer)
that transmit or communicate the com-
puted results.

* The control unit synchronizes all devices,
memory and ALU.
2.2.2. Harvard Architecture [20%]
The Harvard architecture provides separate
memory blocks for code (program or instruc-
tions) and data. As the code and data memory
blocks are different, the contents of address
0000 in the code block and the contents of
address 0000 in the data block are different. The
CPU reads instructions from the code addresses

and reads data from the data addresses.

The system design and implementation in
the original Harvard architecture were rela-
tively complex. The modified Harvard architec-
ture provides one memory block but partitions
it into code and data sections. Data memory
sections are read/write capable, and code
memory sections are read-only (thus protects
code from getting corrupted at runtime). 1/O
operations can be performed simultaneously.

2.2.3.  Instruction Set Architecture [8*,C4.8.3]

An instruction set architecture (ISA) is an
abstract model of how a CPU executes the

instruction sets defined for the system. An
ISA defines registers (address, data, flags), data
types, instructions specific to the computer
or system, memory (internal and external)
addressing schemes, and I/O handling models.

A reduced instruction set computer (RISC)
architecture and a complex instruction set
computer (CISC) architecture are the two
primary types of ISAs.

In RISC, the instructions perform single
tasks such as reading from memory or 1/0,
performing arithmetic or logical computa-
tion, and storing data into memory or 1/O.
The computer system is simple but requires
more instructions to execute a task. It requires
fewer clock cycles per instruction, and instruc-
tion sizes tend to be fixed. As the instruction
set is small (fewer instructions), it is easier to
build a compiler, and the program can be rel-
atively large. RISC architectures are typically
designed for general-purpose processors.

The instructions are relatively more pow-
erful in CISC and can perform multiple tasks
such as reading data from memory + per-
forming arithmetic operation + storing the
result in memory. Here, fewer instructions are
required to perform a task, but the instruc-
tions take more clock cycles to complete.
Instruction sizes vary widely depending on
operations with registers, memory and 1/O.
Programs are relatively small. CISCs are typ-
ically designed for specific purposes such as
digital signal processing (DSP) and graphics.



2.2.4.  Flynn’s Architecture or Taxonomy
[8*,C9.3]

The computing architectures described above
consider a single computer at a time. Michael
J. Flynn proposed concurrent computer archi-
tectures, where multiple instruction streams
and multiple data streams are used in the
system. Software engineers need to know the
different types of Flynn’s architecture, with
examples, including the following:

* Single instruction, single data stream
(SISD) architecture.

* Single instruction, multiple data stream
(SIMD) architecture.

* Multiple instruction, single data stream
(MISD) architecture.

¢ Multiple instruction, multiple
stream (MIMD) architecture.

data

Variants of these architectures include array
processing, parallel processing, and asso-
ciate processing; processing single program
multiple data streams, and multiple program
multiple data streams. Software engineers are
expected to know the differences among these
architectures, along with case studies, so that
they can choose the right architecture to solve
the problem at hand.
2.2.5.  System Architecture [6%, C6]
System architecture is the overall system
design, considering hardware architec-
ture, software architecture, modules, inter-
faces, data management, and communication
among modules. Distributed computing has
become affordable with the development of
efficient, high-end, high-performance servers,
storage, network devices, software, and tools.
Several reference designs or architectures are
available for any given application.

Typical system architectures include the
following:

* Integrated system architecture:
Computing, 1/0, data and networking
are tightly coupled and available in

COMPUTING FOUNDATIONS 16-5

one box. This architecture is typically
used in solutions designed for specific
applications.

* Distributed system architecture:
Computing and storage are located in
separate but networked boxes. This archi-
tecture supports scaling, provides cen-
tralized or isolated data storage, and
shares computation load.

* Pooled system architecture: Several com-
puting, storage and network resources are
available in pools and provided depending
on demand. This architecture provides
for efficient use of shared resources.

* Converged system architecture: As the
name implies, this is the convergence
of distributed and pooled architectures.
This architecture supports agility and
scalability.

Software engineers are also expected to
know and be able to apply various other
architectures, including .NET Framework
architecture, Unix architecture, and virtual
machine architecture.

2.3. Microarchitecture or Computer

Organization [8*, C4]
Microarchitecture or computer organization
explains how the ISA of a computer is imple-
mented and how different components in the
system function and interact with one another
to produce the desired outcome.

System architects and engineers must know
the various components used in the system
along with how they function. Some of these
components are discussed below.
2.3.1. Arithmetic Logic Unit [8*, C1.2]
The ALU performs all arithmetic computa-
tions and logical operations. The CPU typ-
ically has an ALU, processor, memory, and
control unit. High-end CPUs may also have
other functionality-specific processing units,
such as a floating-point unit (FPU), to per-
form computations involving floating point or
real numbers (fractions). ALUs have registers
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that are high-speed memory and internal to
the ALU. The ALU executes the processor
instruction sets. All operations are typically
carried out on the registers.

Various schemes may be implemented
to improve the performance of the ALU,
including pipeline processing and parallel
processing. The latest CPUs provide multiple
cores and multiple threads that help achieve
maximum throughput. Software engineers
are expected to know the differences between
multiple cores and multiple threads, along with
specific cases illustrating the best use of these.

Specific-purpose coprocessors and asso-
ciate processors are used with main processors
to support faster processing.

2.3.2.  Memory Unit [8*, C6]

Memory units are used to store data or infor-
mation, which is accessed by the CPU. The
total amount of memory a computer can have
is derived from the maximum number of
address lines supported by the CPU. Different
types of memory used in the system include
read-only memory (ROM), and read-write
memory or random access memory (RAM).
Software engineers working on perfor-
mance-critical applications are expected to
know the differences among various types
of memory, including static RAM (SRAM),
dynamic RAM (DRAM), asynchronous
DRAM (ADRAM), synchronous DRAM
(SDRAM), double-data-rate SDRAM (DDR
SDRAM), rambus DRAM (RDRAM), and
cache DRAM (CDRAM), along with pros,
cons and use cases of each.
2.3.3.  Input/Output Devices [8*, C7]
As the names imply, input devices are those
that provide inputs to the computer system,
and output devices are those that deliver com-
puter systems’ output to the user. While some
devices are input only (keyboard, mouse,
microphone, etc.) or output only (printer,
monitor, speakers, etc.), a few devices serve

as both input and output devices (e.g., touch
screens, hard disks, USB drives).

Software engineers are expected to under-
stand the interface of the I/O devices with the
system, whether they are memory-mapped I/O
or I/O-mapped 1/0 devices, and device drivers
required for the users or applications to interact
with the devices through the operating system.

2.3.4. Control Unit [8*, C4.2]
The control unit synchronizes multiple com-
ponents in the computer system. Typically,
control units are part of the CPU. They inter-
pret instructions and coordinate data move-
ment among different components (memory,
I/O devices and ALU). Control units are
also used to enable or disable components or
devices and reset devices.

Software engineers are expected to be
aware of the different types of control units,
including hardware control units and micro
programmable control units (single-level and
two-level control stores), along with the bene-
fits and challenges of each.

3. Data Structures and Algorithms
[8*,C2] [18*, C10 Part V]

Data structures are fundamental to computer
science and software engineering. Every pro-
gram uses data — receives input (data), per-
forms specific functions on the data and
produces output. Data structures is about rep-
resenting different types of data effectively,
performing various operations on the data pro-
ficiently, and storing and retrieving data effi-
ciently. Software engineers must internalize
data structures, the selection of data structures,
and operations on them specific to applications.

In this chapter, different types of data
structures and various operations on them are
discussed.

[18% C10],
[5%,C2.1 - 2.6]

3.1. Types of Data Structures

Data type is an attribute of data. Various data
types are identified and defined based on dif-
ferent characteristics of data, the need for
grouping data items and various operations



performed on data. Data structures are
grouped primarily based on the physical and
logical ordering of data items.

Primarily, data is grouped into three types:
basic, composite or compound, and abstract.

Basic or primitive data types include char-
acter, integer, float or real, Boolean, and
pointer data.

Compound data types are made of multiple
basic or primitive, or even multiple compound
data types. Some of the compound data types
include sets, graphs, records and partitions.

An abstract data type (ADT) is defined by
its behavior (semantics) from the user’s per-
spective, specifically from the point of pos-
sible values and operations.

Composite or compound data types are
further grouped under linear, and hierarchical
or nonlinear data types.

Linear data types include one-dimensional
and multidimensional arrays, strings, linked
lists (singly linked lists, doubly linked lists,
circular lists), stacks, queues, and hash tables.

Hierarchical or nonlinear data types
include trees, binary trees, n-array trees, B
trees, B+ trees, weighted balanced trees, red-
black trees, heaps, binary heaps and graphs.

In the current era of free text queries or
natural language processing, software engi-
neers may need to understand strings and var-
ious operations on strings, and to be able to
analyze skip lists.

Software engineers must understand the
nuances of various types of data and their
sizes in memory (short integer, integer,
long integer, long long integer, signed and
unsigned integer, float, double, long double,
double byte character set (DBCS), Boolean,
etc.), along with how various data types are
represented and stored in memory and how
various operations are performed on them.
Sets, graphs, and trees are discussed in more
detail in the Mathematical Foundations KA.

3.2. Operations on Data Structures
[5*, C2.1-2.6]

Basic operations performed on data structures
include create, read, update and delete (CRUD).
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Compound data types also require various ways
of traversing data sets to identify specific data
items before performing the operation.

It is important to ensure that any insertion
or deletion of items in a data set or database
does not alter the data set or database in a way
that violates any policy under which the data-
base was designed and built.

Additional operations performed on data
structures include sorting the data items in a
specific order, searching and locating a data
item, and merging two or more data sets
into one set without disturbing the policy
on which the data set is built. Searching
and sorting algorithms are discussed in the
next section.

Different data structures are created to suit
specific applications, such as stacks, queues,
trees, and graphs. Software engineers are
encouraged to learn the traversals through non-
linear data structures, which include different
tree parsers (pre-order, in-order, and post-order
tree traversals), CRUD operations on trees, tree
balancing, binary search trees (BSTs), AVL
trees, and red-black trees, and to learn tree
search algorithms (depth first, breadth first,
shortest paths, etc.). Some of these are dis-
cussed in the Mathematical Foundations KA.

3.3. Algorithms and Attributes of Algorithms
[18* C26,C27]

All software implements logic to perform the
required function. That logic or algorithm to
perform a specific task has to be designed or
chosen with consideration for system per-
formance, security, portability, maintain-
ability, scalability and simplicity, among
other concerns.

The complexity of an algorithm is deter-
mined by measuring the computational
resources (computing power and space) con-
sumed by that algorithm for a given set of data.

A thorough understanding of data struc-
tures is vital for analyzing and designing good
algorithms. Refer to the “Data Structures and
Organization” content area for more details.

The attributes of algorithms are many and
include functionality, correctness, robustness,



16-8 SWEBOK?® GUIDE V4.0a

for a function f(n).

Asymptotic Notations | Description

Big O Big O notation provides the upper bound of operations (worst-case
scenario) for a function f(n).

little-o Little o notations are used to depict scenarios where the upper bound
is not tight.

Big Omega () Big Q notations are used to depict lower bounds (best-case scenarios)

little-omega ()

Little omega () notations are used to depict loosely bound best-case
scenarios of an algorithm.

Theta (©) Theta notation bounds the function from above and below (provides
average-case complexity of an algorithm).
Table 16.1. Asymptotic Notations of Algorithms
modularity, maintainability, programmer- worst-case scenario. The complexity of algo-

friendliness (ease of integration into the project
and ease of use), user-friendliness (i.e., how
easily it is understood by people), need for pro-
grammer time, simplicity, and extensibility.

A commonly emphasized attribute of algo-
rithms is “performance” or “efficiency.”

The parameters that matter for an algo-
rithm’s resource consumption include, but are
not limited to:

=

Hardware.

Software.

3. Algorithm selection and design for a spe-
cific problem.

4. Effective implementation.

»

3.4. Algorithm Complexity [5% S1, S3, S4,
S5, 56, 57,511, S12]

The complexity of an algorithm is a mea-
sure of the resources it consumes (computing
power or memory) for a specific problem and
given data set.

Choosing the right data structures and
operations on data structures and ensuring
optimal implementation of the algorithm also
effect the algorithm’s complexity.

3.5. Measurement of Complexity [5% S1.1,
S3, 54, S5, S6,511.1, 512.1]

Often, the complexity of an algorithm is
denoted by the resources consumed in the

rithms is typically measured by asymptotic
notations for best-case, worst-case and aver-
age-case scenarios in terms of resource con-
sumption for a given data set.

Popular asymptotic notations for algo-
rithms are listed in Table 16.1.

Learning the computation of the listed
notations for different sets of input data (e.g.,
sorted, unsorted, and sorted in reverse order)
is important.

'The complexity of an algorithm can be con-
stant, linear, quadratic, cubic, exponential or
logarithmic. These complexities are described
in Table 16.2. Typically, constants are not
considered when computing the efficiency of
an algorithm.

[18* Part IV,
Part VI]

3.6. Designing Algorithms

The software engineer must consider the
specific application’s purpose and the per-
formance requirements in order to select an
appropriate algorithm. In addition, the soft-
ware engineer must consider linear pro-
gramming versus parallel programming and
single- versus multi-threading.

The efficiency of an algorithm is measured
by the resources it consumes, primarily com-
puting time and memory.

A software engineer has to know a few
standard algorithms and relevant concepts,
including the following:
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Complexity | Notation Description
Constant o) Regardless of the data size, the algorithm takes a constant
number of steps to perform the operation.
Linear O(n) The number of operations is linearly proportional (steps are a
constant multiple of the data set size n).
Quadratic O(n?) The algorithm takes the order of n?steps for performing the
operation on the data set of size 7.
Cubic O®d) The algorithm takes the order of 7’ steps for performing the
operation on a data set size of 7.
Exponential | O(n*) 'The algorithm has an order of exponential dependability for
o2 performing the operation on a data set of size 7.
O(n!)
. . O(log (n)) The algorithm takes the order of log (n) steps (base of log is
Logarithmic O(N*log (n)) | typically 2).

Table 16.2. List of Algorithmic Complexities

¢ Common types of algorithms: Brute
force algorithm, Recursive algorithm,
Divide & Conquer algorithm, Dynamic
programming  algorithms,  Greedy
algorithm, Backtracking algorithms,
Randomized algorithms.

* Randomized approximation algorithms,
randomized rounding, approximation
algorithms, P and NP complexity class
algorithms, Cook’s theorem, reductions
and completeness algorithms.

* Multiple comparison operations per-
formed simultaneously in a network
model of computation. Popular sorting
network algorithms include comparison
networks, zero-one principle, merging
network and bitonic sorter.

* Optimized algorithms for performing
several operations on a matrix, such as

matrix  multiplication, transposition,
matrix inversion, median, and finding
determinants.

¢ Cryptographic complexity and algo-
rithms: secret key (symmetric) encryp-
tion algorithms, public key (asymmetric)
encryption  algorithms and  hash
functions.

* One-way functions, class UP, space com-
plexity, deterministicand nondeterministic
space complexity classes, the reachability
method, and Savitch’s theorem.

* Graph representations, graph algorithms,
breadth-first and depth-first search,
topological sort, minimum spanning
tree, Kruskal and Prim algorithms, and
single-source shortest paths (Bellman-
Ford and Dijkstra algorithms).

* Complexity of randomized computa-
tion, interactive proofs, complexity of
counting, Boolean circuit complexity.

Of particular importance in many soft-
ware systems are algorithms for sorting and
searching, these are discussed in more detail.
3.7. Sorting Techniques [18* C6-C9]
Sorting is the process of arranging data items
in a specific order.

Popular sorting algorithms include Linear
sort, Bubble sort, Quick sort, Merge sort,
Radix sort, Heap sort, Bucket sort, Pigeonhole
sort, Bitonic sort, Tree sort, Cartesian Tree
sort, 3-Way Quick sort,3-Way Merge sort,
and Sorting Singly / Doubly linked lists.

Each sorting algorithm has its benefits and
shortfalls. Selection of an appropriate algo-
rithm depends on the size of input data, the
type of data (linear or nonlinear), and the type
of data set (completely unsorted, partially
sorted, etc.). The algorithms are implemented
in both iterative and recursive methods.
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Typically, iterative methods are better than
recursive methods for CPU performance and
memory. However, recursion provides easy
methods for solving specific problems, such as
tree operations. If adequate computing power
and memory are available, the difference
between recursive and iterative implementa-
tion methods is negligible.

In the case of applications where certain

sorting algorithms work best, software engi-
neers should learn and accommodate any
preconditions and complexities (demand on
memory and computing power) involved in
using them.
3.8. Searching Techniques [5* C6]
Searching is a process of finding specific data
items or records in a set of data items or a
database.

Search algorithms are primarily catego-
rized into sequential search (data set is tra-
versed sequentially until the end of the data
set) and interval search (the search moves efhi-
ciently through a sorted list, balanced tree,
etc.), based on how data sets are organized.

Depending on the type of the data item
and the size of the data set, various search
techniques are used to find the desired data
item. Popular search algorithms include
linear, binary, jump, interpolation, exponen-
tial, Fibonacci, sub-list (search a linked list in
another list), logarithmic, tree and hashing.
3.9. Hashing [18* C11.2]
Hashing is one of the very important and
popular technique in which data of arbitrary
size (key values) are converted into values
of fixed size called hash values, which index
into a hash table so the data records can be
located easily. The function used for that pur-
pose is called a hash function, and the values
returned are called hash values, hash codes,
digests, or hash keys.

Difterent properties of hash functions, such
as uniformity, efliciency, universality, applica-
bility, deterministic, defined or variable range,
data normalization, testing, and measurement,

must be understood and considered when
designing or choosing a hash function.

Various types of hash functions are designed
for different types of key values, applica-
tions, and database sizes. Hash function
types include trivial hash function, division
method, mid-square method, digit folding
method, multiplicative hashing, double
hashing, open and closed hashing, rehashing,
extendible hashing, and cryptographic and
noncryptographic hash functions.

Software engineers are expected to learn,
implement and be able to compare different
types of hashing algorithms, various collision
resolution techniques, linear probing, qua-
dratic probing, separate chaining, and open
addressing.

4. Programming Fundamentals and

Languages [4%, Cé6]
Computer programs are sequential steps or
instructions that work on provided inputs and
generate desired or specific outputs.

Software engineers must carefully consider
various aspects before selecting a program-
ming language to solve a specific problem.

4.1. Programming Language Types [8*,C8.4.4]

Depending on the hardware, operating
system, and application various types of
programming languages are developed and
used. Basic types of programming languages
include microprogramming, machine lan-
guages, assembly programming and high-
level programming.

Microprogramming is executed within the
microcontroller or microprocessor chips to
execute the assembly language instructions.

Assembly language programs use the mne-
monic specified by the microcontroller or
microprocessor. Typically, the microcon-
trollers or microprocessors are designed to
address specific applications (DSP processors,
graphics chips, I/O controllers, mathematical
COProcessors, generic processors, etc.).

High-level languages enable programs to
be written in instructions similar to English,



which makes it easy for the developer and
maintainer to write and maintain the pro-
grams. Various types of high-level program-
ming languages include the following:

¢ Functional programming languages.

* Procedural programming languages.

* Object-oriented programming languages
* Scripting languages.

* Logic programming languages.

A programming language can support more
than one programming paradigms Software
engineers need to study multiple program-
ming languages to choose the right one for a
specific application.

Many programming languages, such as C,
C++ and Java, use compilers to build execut-
ables, whereas other programming languages,
such as JavaScript, Ruby and Python, use

interpreters.

4.2. Programming Syntax, Semantics, Type

Systems [8* C8.4.4]
The syntax of a programming language is its
grammar — the various constructs the pro-
gramming language uses. A compiler or inter-
preter checks the syntax of all declarations,
statements (algorithmic statements, condi-
tional or logical statements, control statements,
loops, special language-specific statements,
micros, etc.), and functions or procedures, and
creates notifications of any errors.

Semantics refers to the meaning or inter-
pretation of the statement. The meaning could
vary at runtime, depending on runtime values.

A type system assigns a type to a data item
or to constructs of a program, such as variables,
expressions and functions. In static typing,
the type is fixed; it is defined during program
creation and checked at compilation time.
Languages such as C, C++ and Java support
static typing. In dynamic typing, the type of a
variable can change at runtime depending on
the context and hence is checked at runtime.
Dynamic typing languages include Python,
Perl, PHP and Ruby. Dynamic typing is also
called polymorphic typing.
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Software engineers are expected to know
how high-level programming languages are
translated into machine languages, to be
familiar with the various types of compilers,
and to know the differences among compilers,
interpreters, cross-compilers, assemblers and
cross-assemblers. Software engineers are
encouraged to learn about compiler phases,
including preprocessing, lexical analysis,
syntax analysis, intermediate code generation,
optimization, code generator, linkers, loaders
and debuggers.

Tokens, grammars, syntax trees, parse

trees and weights to various operators (prece-
dence) in arithmetic and logical equations are
important to analyze and understand.
4.3. Subprograms and Coroutines [4*, C6.3]
Subprograms or functions are programs or
building blocks that perform specific (part)
functions in the scope of a complete project.
Subprograms provide for breaking the larger
program into smaller modules. The modules
are typically sections of code that are used
multiple times in multiple places. The subpro-
grams reduce memory space, improve read-
ability and maintainability of the program,
and execute parts of the program with dif-
ferent values at different places and times.

'The subprograms have an entry point and
typically have multiple input parameters on
which the subprogram acts and produces
output. The scope of input parameters is local
to the subprogram. Subprograms that return
value by their name (which can be used as a
variable in a statement) are called functions,
and subprograms designed not to return any
value are called procedures.

By default, the scope of subprogram
parameters is dynamic and local to the sub-
program. However, if the subprograms have
to remember their history or previous values,
they have to be declared static or as specified
in the chosen programming language.

Different programming languages sup-
port one or more types of parameters
passing, including pass-by-value, pass-by-ref-
erence, pass-by-name, pass-by-result and



16-12 SWEBOK® GUIDE V4.0a

Subroutine S1 Subroutine S2 Subroutine S3

Resum_esy

Resume %3/ Resume ?3/ .
* .
s ° Resume S1
° .
. ° .

Figure 16.3. Example of Coroutine

pass-by-result-value. ~ Software engineers
should know the differences among these
types and use them appropriately.

Many high-end languages support the
nesting of subroutines and recursions, where a
subroutine calls itself. Different types of recur-
sions include cyclic or direct recursion (subrou-
tine calls itself) and acyclic or indirect recursion
(subroutine A calls subroutine B, which in turn
calls subroutine A). It is important to establish
the exit criteria in recursive subprograms.

Software engineers are encouraged to
understand, using case studies, how the sub-
program return address and parameters are
stored in memory (runtime stack), how they
are used in the subprogram and for returning
to the called subprogram, and the scope of
variables (global and local).

A subprogram with multiple entry points,
where the previous exit point is remembered
for resumption at a later point, is called a
Coroutine. A Coroutine call is typically
called a resume call. The first resume call enters
the subroutine from the beginning, and sub-
sequent resume calls enter the subroutine at
the point where it was exited last.

High-end  languages  that  support
Coroutines include C++20, C#, Java,
JavaScript, Kotlin, Perl, NET Framework,
Python, Ruby and many assembly languages.

Software engineers are encouraged to
understand specific applications where corou-
tines are useful and to use the coroutines. It
is an interesting exercise to implement corou-
tines in C, as C does not support corou-
tines natively.

Figure 16.3 depicts the functioning or con-

trol flow of coroutines.
4.4. Object-Oriented Programming  [4%,C6.5]
As the name suggests, object-oriented pro-
gramming languages are based on objects.
The objects typically have both data and
functions that operate on that data. The data
of an object is typically called the object’s
attributes or properties, and the code or func-
tions that work on the attributes are called
operations externally (by the client or user)
and called methods internally (referring to
how the operation is implemented by the
developer).

A Class is a programmer-defined proto-
type that defines the attributes and methods.
Objects are actual instances of a Class.
There could be multiple Objects of a Class
with varied characteristics. For example, a
Class can be defined by the characteristics
and operations of a vehicle, whereas objects
are instances of the class vehicle such as car,
bus or truck.

'The objects interact with one another using
the methods or operations.

Important characteristics of object-ori-
ented programming (OOP) are Abstraction,
Encapsulation, Inheritance and Polymorphism.

Abstraction is a property that exposes only
required or relevant information and func-
tionality to the user, hiding the details and
nonessentials. Thus, the implementation is
hidden from the user of the superclass.

One of the key benefits of encapsulation is
the ability to hide or protect data from unau-
thorized users. The software engineer can
give different levels of protection to data and
methods by declaring them private (local to
class) or public (available to other classes).
'This also protects data from corruption, either
intentional or accidental.



Inheritance is an important feature of
OOP, where a subclass or derived class
inherits the properties of a superclass or base
class. Primary inheritance modes include
public, protected and private modes.

Polymorphism is another key feature of
OOP. Polymorphism is a provision of pro-
viding a single interface to entities of dif-
ferent types. For example, shape could be
a base class with draw as a method, and
objects could be a circle, triangle or rect-
angle. The implementation of method draw,
though the name is the same, differs for a
circle, triangle and rectangle. Polymorphism
has two types:

o Static or compile-time polymorphism: The
methods (functions) or operators are
overloaded and resolved during compile
time. Example: The methods, though
they have the same name, will have dif-
ferent types or numbers of parameters.

* Dynamic or runtime polymorphism: The
overloaded method to be executed is
resolved at runtime. Example: When
both base class and derived class have the
same method, the base class method is
said to be overridden.

Popular OOP languages include C++, C#,
Cobol 2002, Java, Python, Lisp, Perl, Object
Pascal, Ruby and Smalltalk.

It’s important to recognize that using
OOQP requires a different mindset than using
traditional, procedural, or structured pro-
gramming does.

4.5. Distributed Programming and Parallel
Programming [4*,C6.6]
In a distributed computer system, multiple
parts of the software are run on multiple com-
puters, connected through computer networks,
to achieve a common goal. Writing such pro-
grams is called distributed programming.
Parallel programming is a type of com-
puting in which different parts of the program
are run in parallel to achieve the same objec-
tive or goal. Table 16.3 compares distributed
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and parallel programming. High Performance
Computing (HPC) aims to speed-up the exe-
cution of software, both distributed program-
ming and parallel programming are ways to
do this and is increasingly used together in
hybrid software.
4.6. Debugging [6%,C2.2.2]
Programs, when written, are expected to
function properly and generate the expected
output. However, programmers often face
three types of errors — syntax errors, runtime
errors, and logical errors — at different stages
of software development.

Syntax errors are deviations from the stan-
dard format specified by programming lan-
guages. 'These are explicitly identified by
compilers and are easy to fix.

Runtime errors surface when a program
runs into an unexpected condition or situation
such as dividing by zero, memory overflow, or
addressing a wrong or unauthorized memory
location or device, or when a program tries to
perform an illegitimate or unauthorized oper-
ation or tries to access a library, for example.
The programs must be thoroughly tested for
various types of inputs (valid data sets, invalid
data sets and boundary value data sets) and
conditions to identify these errors. Once iden-
tified, runtime errors are easy to fix.

Logical errors are slipups in implementing
the logic to achieve the desired output. These
errors must be traced and resolved with various
data for each functionality. Several sophisti-
cated high-end debuggers help trace each vari-
able or data item and support setting various
types of break points.

4.7. Standards and Guidelines [3* C28.5,

C31.5]

As the computing system or application
becomes bigger and complex, more program-
mers are involved. Their individual program-
ming styles affect the project schedules and
make system integration difficult, so systems
become defect-prone, and maintenance and
enhancement become challenging.
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Parameters Distributed Programming Parallel Programming
Functionality A task is shared and executed by mul- | Two or more processors on a computer
tiple computers that are networked. share and execute the task in parallel.
Computers Multiple computers in different loca- | Two computer with one or more
tions but networked. processors or cores.
Memory Each computer has its own memory. | Computers can have shared or
distributed memory.
Communication | Computers communicate Processes communicate through a
through networks. bus or inter-process communication
(IPC) methods.
Benefits Failure of one computer does not As multiple processes run in parallel,
affect the functioning of the task, as | generally the performance increases.
it is transferred to another computer. .
Failure of one processor does not
Provides scalability and reliability for | affect the performance of other
end users. processors or cores
Disadvantages Having multiple systems could Using multiple processors or cores
become expensive; the cost must be could be expensive.
weighed against customers’ need for D d £
Tication uptime ependency of one process
app ptime. on another process could
Network delays could affect the introduce latency.
overall functioning of the task.
Designing an efficient distributed
computing system is relatively difficult.
Example Telephone and cellular networks, 2D and 3D simulations and rendering
Applications internet, World Wide Web networks, | in computer graphics, scientific
distributed database management computing.
systems, network file systems, grid
computing, cloud computing.
Example Golang, Elixir, Scala, Fortran, Apache Hadoop, Apache Spark,
Programming C and C++. Apache Flink, Apache Beam, CUDA,
Languages, OpenCL, OpenHMPP, MPP,
libraries OpenMP for C, C++ and Fortran.
engines,
framaworks
Table 16.3. Comparison of Distributed and Parallel Programming
An estimated 82% of vulnerabilities easily maintainable, less defect-prone soft-

are caused by clashes between program-
ming styles’

Hence, quality-conscious companies often
have defined tools, standards and guidelines,
which set rules and recommendations for
their programmers and testers to follow.

When software teams follow appro-
priate coding standards, they create read-
able, cleaner, portable, reusable, modular,

ware code, and project schedules become
more predictable. The following practices can
help organizations implement such standards
successfully:

¢ Carefully choose the coding standards
and guidelines that suit the application or
system being developed.

¢ Consider open standards created by

§ https://www.ptsecurity.com/ww-en/analytics/web-vulnerabilities-2020/
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community participation, such as Software
Engineering Institute (SEI) Computer
Emergency Response Team (CERT), as
well as closed standards created by working
groups such as the Motor Industry Software
Reliability Association (MISRA).

* Educate programmers to follow adopted
standards and guidelines.

* Use tools and periodic reviews to ensure
adopted  standards and  guidelines
are followed.

* Review and revise standards and guide-
lines from time to time, learning from
project execution.

SC 22 is a subcommittee of the Joint
Technical Committee ISO/TEC JTC 1 of the
International Organization for Standardization
(ISO) and the International Electrotechnical
Commission (IEC) for defining standards for
programming languages, their environments
and system software interfaces (ISO/IEC
JTC 1/SC 22). Software engineers are recom-
mended to refer these standards as well.
5. Operating Systems [197]
An operating system (OS) is software that
manages the computer’s hardware and pro-
vides a platform for software applications.
Software engineers need a good general
understanding of OSs and OS objectives, ser-
vices, and functions.

Different types of OSs have been designed
over time to support various types of systems
or applications, including batch processing,
multiprogramming, time-sharing, and
dual-mode operation — for protecting 1/0,
memory, CPU, kernels and micro-kernels.

To choose an appropriate OS, software
engineers have to analyze different types of
operating systems, such as single-user, sin-
gle-tasking, multiuser, multitasking and
multi-threading OSs; real-time OS (RTOS);
network OS; and distributed OS. For small
systems, an operating system may not be
required. It is important to study examples
of each type and compare their benefits and
limitations.
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Software engineers need to understand
operating systems’ basic structure, system
architecture types, design approaches, the
architecture of distributed OS and issues in
distributed OS.

An operating system typically has four
major components: processor management,
memory management, device management
and information management.
5.1. Processor Management [19*, C2,C8]
Software engineers must understand the
concepts of processor, process and address
space. They must understand booting, pro-
cesses, cores, threads, user and kernel threads,
fork and exec, synchronization, and hardware
support for locking. They should compare and
contrast various CPU scheduling concepts,
scheduling algorithms, algorithm evalua-
tions, multiple processor scheduling and real-
time scheduling, concurrent programming,
deadlocks, critical regions, conditional crit-
ical regions, and monitors.

Communication among different pro-
cesses is important in multitasking, mul-
tiuser OSs. A software engineer must have a
deep understanding of inter-process commu-
nication (IPC), and types of IPCs, including
messages, pipes, shared memory, semaphores,
modularization and process synchronization.

Various types of locks are used to ensure
proper synchronization of data among pro-
cesses, including semaphores, binary sema-
phores, counting semaphores and mutex locks.
Deep understanding of common challenges
of IPCs, deadlocks, deadlock scenarios, and
deadlock characterization; prevention, avoid-
ance, detection and recovery of deadlocks;
and precedence graphs is critical and to be
internalized with the help of case studies.

Software engineers are required to study,
with examples, concurrent languages, pro-
cesses and scheduling, job and process con-
cepts, and various types of scheduling:
CPU-I/0 interleaving, non-preemption, con-
text switching, and scheduling algorithms
(first come, first served (FCFS), shortest
job first (SJF), shortest remaining time first
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(SRTF), priority scheduling, round robin and
combined schemes).

5.2. Memory Management [19%, C3]
A software engineer needs a very good under-
standing of how memory is managed in the
system and of the different types of memory
and relevant concepts — physical memory,
virtual memory, secondary memory, memory
hierarchy, linking and memory allocation.

Engineers must understand memory frag-
mentation (both external fragmentation,
internal fragmentation), and various memory
management concepts, including units,
paging, page tables, segmentation, paged
segmentation, virtual memory management,
demand paging, page replacement, thrashing
and swapping.

Memory is allocated to processes in dif-
ferent ways — for example, through contig-
uous allocation, noncontiguous allocation,
dynamic partitioned memory allocation, stat-
ic-swapping and overlays.

An understanding of logical addresses,
partitions, static versus dynamic memory
allocation, free space management, and
defragmentation of memory blocks is also
important.

As the physical memory available is always
limited, various memory page replacement
strategies are designed and implemented. These
strategies include first-in-first-out (FIFO),
not-recently-used (NRU), least recently used
(LRU), most recently used (IMRU), least fre-
quently used (LFU), most frequently used
(MFU), longest distance first (LDF), second
chance, and aging among others.
5.3. Device Management [19%, C5]
A software engineer must have good knowl-
edge of different types of I/O devices — mem-
ory-mapped and I/O-mapped devices, block
and character devices, and buffering devices.
Engineers should compare and contrast
polled, interrupt-driven and direct memory
access (DMA) I/0 devices, and blocking
versus non-blocking I/0 devices.

Device drivers are software programs
that provide an interface between hardware
and applications. Software engineers should
understand device drivers, the various types
of device drivers, device driver tables, device
driver functions, and interfaces for various
types of hardware devices, as well as hard-
ware and software interrupts and interfaces
by interrupts and polling.

Software engineers should also understand
that issues with caching, scheduling, spooling
and performance can arise for shared devices
in multiuser, multitasking OSs and device a
mechanism for resolving them.
5.4. Information Management [19* C4]
Software engineers need to understand the
following:

¢ The concept of a process, a system pro-
grammer’s view of processes, an operating
system’s view of processes, and operating
system services for process management

* File system management, storage manage-
ment, file attributes, directory structure,
file system structure, mass storage struc-
ture, I/O systems, protection and security

* User and operating system views of the file
system and various types of file systems —
simple file system, symbolic file system,
logical file system and physical file system

Engineers should be familiar with various
operations including access control lists (ACLs),
access matrix, access control, access control ver-
ification, capabilities allocation strategy, 1/O
initiators, device strategy, device handlers, disk
scheduling, disk space management, existence
and concurrency control, schemes and com-
bined schemes, authentication schemes, direc-
tory namespace, hierarchies, directed acyclic
graph (DAGs), hard and soft links.

5.5. Network Management [4* C4.1]
Network management is the process of
administering and managing various types of
networks. This content area includes network



management concepts, distributed objects,
distributed file systems, and network archi-
tecture, design, issues and resolutions.

A network manager will need detailed
knowledge of physical and logical time, as
well as internal and external synchroniza-
tion protocols in network management such
as Cristian’s algorithm, Berkeley’s algorithm,
the Network Time Protocol, Lamport’s log-
ical clock, Vector clocks, Casual ordering of
messages, and global state.

Other important topics include distrib-
uted computation, termination detection,
distributed mutual exclusion and election,
simple and multicast-based mutual exclusion
algorithms; Centralized, Ring based, Ricart
Agrawala’s algorithm, Maekawa’s algorithm,
Election algorithms, Bully’s algorithm and
multicast communication.

In addition, software engineers should
understand important principles include hard-
ware security, external security, operational
security, password protection, access control,
security kernels, and the layered approach.

6. Database Management

A database is a collection of related data ele-
ments, collected specifically for use by one or
more applications and stored in an organized
format for easy and quick access, using one or
more key values. The data items or elements
are stored in one or more databases or files,
and the relationship among them is estab-
lished using a database schema.

Basic operations performed on the database
include creating the database and its elements
(table, index, views, functions, procedures,
etc.), deleting or dropping items from the
database, modifying contents and structure
of the database, and data retrieval, comment,
and rename actions.

Different types of databases include rela-
tional databases, not only structured query
language (NoSQL) databases, columnar data-
bases, object-oriented databases, key-value
databases, document databases, hierarchical
databases, graph databases, time series data-
bases, and network databases. Understanding
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what type of database works best for specific
applications and analyzing the definition,
structure, specific pros and cons of each type
of database; what along with examples helps
software engineers choose the right type of
database for a given application.

When selecting a database, software engi-
neer should evaluate data models, storage
models, types of databases, key values, graphs,
column family, volume of data, consistent data
access time, and the number of users or appli-
cations accessing the database (traffic), etc.

'The learners and users of the database system
need to create two roles (database user and
database architect), review several case studies
of increasing complexity, create multiple data-
bases, and analyze the information. This process
significantly helps one to understand and inter-
nalize the database design and management.
6.1. Schema [22% C2.1.4]
A database schema is a structure or record of
data items, defined in one or more database
tables, and the relationships between them.
The schema may also contain formulae to
check the integrity of data items, relationships,
indexes, functions or procedures and views.

While a physical schema explains how the
database is designed at physical level (files),
the logical schema describes how different
data items are defined in one or more tables
and interconnected.

Different types of schemata used in the
industry include star, snowflake and fact con-
stellation schemata. Different types ofkeysused
in schemata include Primary Key, Secondary /
Alternate Key, Foreign Key, Composite Key,
Surrogate Key and Candidate Key.

Parameters that influence the definition
and use of schemata include overlap preserva-
tion, extended overlap preservation, normal-
ization and minimality.

6.2. Data Models and Storage Models
[22* C2.3]

A data model specifies the logical aspects of
data structure in a data store, and a storage
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model specifies the physical aspects of data
structure in a data store. It is difficult to
achieve both data consistency and high avail-
ability in a database.

'The two primary data models used to dis-
tinguish databases are the following:

* The ACID (atomicity, consistency, isola-
tion, durability) model provides for high
data consistency. ACID-compliant data-
bases are ideal for a finance-intensive
application.

* 'The BASE (basically available, soft state,
eventual consistency) model provides
flexible methods to process data, which
suits NoSQL database types.

Types of storage models include the
following:

i. DAS (direct access storage): Storage
devices are physically or directly con-
nected to the computer that pro-
cesses the data.

ii. NAS (network access storage): Data is
stored in a network and accessed by mul-
tiple computers or applications.

iii. SAN (storage area network): Data is stored
in multiple servers and efficiently provided
to users through a computer network.

6.3. Database Management Systems [22%, C1.3]

Database management systems (DBMSs) are
software systems that provide the necessary
tools for maintaining data optimally, retrieving
stored information effectively, protecting and
securing stored data, and managing access for

users of different levels of authority.
Typical DBMSs include:

A database engine: 'This is the core of a
DBMS. The database engine manages
efficient storing and retrieving of data.
Users with privileges can access the data-
base engine.

« A database manager: This program or set
of programs performs all DBMS func-
tionality in a database (creating, purging,

backing wup, retrieving, maintaining,
cloning and deleting data). It is also
responsible for maintaining the DBMS
with patches and updates.

« A runtime database manager (RDM):
The RDM checks for user authentica-
tion and privileges before any operation
is performed, provides access to a con-
text-based database, provides concurrent
access to the database by multiple users,
and ensures data integrity.

« Database languages: These help in storing,
retrieving, modifying and retrieving data,
controlling user access (privileges), speci-
fying schemata and views, and performing
various operations. Popular database lan-
guages include data definition language
(DDL), database access language (DAL),
data manipulation language (DML),
Transaction Control Language (TCL),
and data control languages (DCL),

« A query processor: This basic and key com-
ponent of DBMS provides an effective,
rich and English-like interface for users
to access the database and perform var-
ious functions or operations.

¢ Reporting: Reporting applies specified fil-
ters, extracts requested data and records
from one or more database tables, and
presents information as specified.

Several free and open-source database
management systems are available.

6.4. Relational Database Management Systems

and Normalization [22* C4]
Conventional file system-based databases
suffered from data redundancy, data incon-
sistency, data access challenges, unautho-
rized access, lack of concurrent access, among
other issues.

A relational database management system
(RDBMYS) stores data in tables and, unlike in
a DBMS, its data tables relate to one another,
multiple data items can be accessed simulta-
neously, a large amount of data is handled,
multiple users can access data concurrently,
data redundancy is significantly reduced, and



multiple levels of data security are supported.

Computer science engineers must under-
stand the difference between the various types
of RDBMS, such as Objective RDBMS, Object
Oriented RDBMS, be familiar with examples,
and know the applications they suit best.

Database normalization is the process of
organizing data in a database and removing
data redundancy and data inconsistency from
the tables. Normalization might increase
the number of tables and increase the query
time. If this occurs, then — depending on the
application and the requirement — de-nor-
malization is applied, where data redundancy
is added for quicker data access.

Different types of database normalizations
are the following:

i.  First normal form (1 NF): Removes dupli-
cation or redundancy. Each table cell
has a single value (creates more entries
and tables). Each row has unique values.
Related data is identified with a unique key.

ii. Second normal form (2 NF): The table
should be in 1 NF; no partial dependency
(creates separate tables with records refer-
enced by multiple records or tables).

iii. Third normal form (3 NF): The table
should be in 2 NF. Transitive dependen-
cies are removed.

iv. Boyce-Codd normal form (BCNF/3.5
NF): The table should be in 3 NF, and X
should be the super-key for any (X->Y).

v. Fourth normal form (4 NF): The table
should be in 3.5 NF and should not have
a multivalued dependency.

vi. Fifth normal form (5 NF): The table
should be in 4 NF and cannot be split
into any more tables without losing data.

vii. Sixth normal form or domain/key normal
form (6 NF/DKNF): The table should be in
5 NF, and every join dependency is trivial.

Most databases are typically normalized
until 3 NF or BCNF. An alternative normal
form, DKNF, is defined where insertion and
deletion of anomalies is avoided (see [13]).

Database engineers are encouraged
to understand normalization forms with
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examples and case studies and to understand
the challenges one would face if the database
were not normalized. Although normaliza-
tion is essential and provides various benefits,
it also increases the number of tables and pro-
cessing time.

6.5. Structured Query Language
[22%,C6,C7,C8]

Structured query language (SQL) is a stan-
dard and popular database language for cre-
ating, updating, and deleting databases and
for retrieving information from databases.
SQL is an inevitable part of most database
management systems.

Typical SQL syntax has several language
constructs or elements, including clauses,
expressions, predicates, queries and statements.

All operations on a database, including cre-
ating, updating, deleting and viewing tables;
performing different normalizations; purging
data; and searching through the database
based on various combinations of parameters
or filters, can be performed using SQL.

Most databases support SQL (except
NoSQL databases), and the SQL syntax and
library of functions supported vary across
database providers (much like programming
languages — though different languages sup-
port similar features, the syntaxes vary).

Database engineers also have to decide
whether to use static/lembedded SQL,
dynamic SQL or a combination of the two,
after weighing the pros and cons of each option
for the particular application. They should
also know the differences between simple and
complex views and use them appropriately.

SQL is standardized and adopted by the
American National Standards Institute (ANSI)
and ISO. The standards are revised from time to
time; the first SQL standard was SQL-86, issued
in 1986, and the most recent is SQL.:2019.

6.6. Data Mining and Data Warehousing
[22% C34]

Databases are designed to store transactions
and retrieve them efficiently.
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Data warehousing extracts data from mul-
tiple databases efficiently and stores it in a
common database so data mining can be per-
formed effectively on the compiled data. Data
warehouses are typically huge, as they store
historical data records.

Data mining extracts requested informa-
tion from the data warehouse, applying var-
ious filters and conditions. Data mining
applies pattern recognition algorithms to
huge data sets to generate required reports.

The different types of warehouses include
enterprise data warchouse (EDW), operational
data store (ODS), and data mart (DM).

Many efficient tools are available to create
data warehouses and mine data from them.

Database engineers must know different
data mining techniques, including associa-
tion, clustering, classification, sequential pat-
terns and prediction, and know how to apply
them for various uses and industries, such as
health care, fraud detection, customer rela-
tionship management, finance and banking,
anomaly detection, prediction, neural net-
works, statistics, and data visualization.

6.7. Database Backup and Recovery [22%, C22]

Database systems are prone to failures, and
data can be corrupted. It is crucial to prevent
data corruption and — if it does occur — to
recognize it immediately and recover the data.

Updating the database for transactions
must be carried out carefully (with commits
at specific checkpoints), and must incorporate
techniques such as undoing, deferred updates,
immediate updates, caching or buftering, and
shadow paging.

Databases must be backed up periodi-
cally to ensure data safety. Backup techniques
include Full database backup, Differential
backup and Transaction log backup.

7. Computer Networks and
Communications  [4%, C4.1], [24*, C1]

A computer network is a group of devices that
are connected for sharing information. The
connected devices (nodes on the network)

can be located near one another, on the same
premises, or somewhere else. Networking is
required for certain benefits, including cer-
tain modes of communication and infor-
mation sharing; the ability to share devices
such as printers, routers and video cameras;
global information and data storing; security
and policy enforcement; remote monitoring;
shared business models; and web browsing.

As we are in the internet era, computer net-
working is a critical element in computing, and
the practitioners of computer science engineering
have to study computer networks and commu-
nication concepts, including examples and case
studies. Many computing paradigms (distrib-
uted computing, grid computing, cloud com-
puting, etc.) are based on networking principles.

It is important for software engineers to
understand the following:

¢ Different types of computer networks.

* Layered architectures of networks.

* Open systems interconnect (OSI) layers

* Encapsulation and decapsulation.

* Application layer protocols.

* Design techniques for reliable and efh-
cient networking.

* Internet and packet delivery.

* Wireless and mobile networks.

* Security and vulnerabilities.

7.1. Types of Computer Networks
[4*, C4.1],[24*, C1.2.1]

Different types of computer networks are
designed and used based on the need, such as
the following:

(PAN) /

1. Personal area network

home network.

Local area network (LAN).

Wireless local area network (WLAN).
Wide area network (WAN).

Campus area network (CAN).
Metropolitan area network (MAN).
Storage area network (SAN).
System-area network (SAN).
Enterprise private network (EPN).

10 Virtual private network (VPN).

00N VAW
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Figure 16.4. Pictorial Representation of Layered Networking

It is important to understand each of the
above network type as well as examples, ben-
efits, limitations and available solutions to cir-
cumvent challenges.

7.2. Layered Architectures of Networks
[24*, C1.5]

A communication system includes hardware
and software, and these components have
become complex to meet complicated use
scenarios and user demands. To support the
implementation and maintenance of such sys-
tems, ISO has developed a layered approach,
where every layer has specific functionality for
processing data and transferring it from one
node to another.

Each layer is independent in its function-
ality and provides services from the lower
layer to the upper layer without providing
details of how each layer’s service is imple-
mented. Each layer (“n”) on a machine com-
municates with the same layer (“n”) on the
peer machine. Rules used in a conversation
are called Jayer-n protocol (see Figure 16.4).

'The basic elements of the layered approach
are service, protocol and interface.

* Service: The set of actions a layer provides
to the adjacent higher layer is the service.

* Protocol: The set of rules a layer uses
to exchange information with the peer
entity is called the protocol. The rules are
primarily for managing both the contents
and order of the messages used.

* Interface: The interface provides a
medium for transferring the message
from one layer to another layer.

Software engineers are expected to under-
stand the essential functionalities required,
various modes in which the data or information
is communicated from one layer to the other,
and data packet formation and interpretation
at peer levels. A useful exercise is to take exam-
ples of different protocols and analyze them.

7.3. Open Systems Interconnection Model
[24* C1.5]

The Open Systems Interconnection (OSI)
Model was defined by the ISO. It serves as
a reference model for information exchange
between applications on two systems or com-
puters through a physical medium.
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OSI proposes seven (7) layers, and each
layer is assigned a specific task. Each layer
independently processes the data it receives
from the upper or lower layer and passes it to
the lower or upper layer, as appropriate.

Engineers must understand each OSI
layer, its functionality protocol, the input
and output of each layer in each direction
(from lower layer to upper layer and vice
versa). Engineers should analyze whether
all seven layers are required for all proto-
cols and what is necessary to optimize for
performance.

Presentation Layer (Layer 6).
Application Layer (Layer 7).

1. Physical Layer (Layer 1).
2. Data Link Layer (Layer 2).
3. Network Layer (Layer 3).
4. Transport Layer (Layer 4).
5. Session Layer (Layer 5).

6.

7.

Engineers must understand the nuances of
each layer, with examples.

7.4. Encapsulation and Decapsulation
[24* C1.5.2]

Each layer, while sending data from the
upper layer to the lower layer, inserts
additional information at the beginning
(header) and optionally at the end of the
data packet received from the upper layer,
treating the packet received from the upper
layer as data. This is encapsulation. The
protocol data unit (PDU), which is the
data packet containing additional informa-
tion from all layers, is sent to the receiving
system. At the receiving end, each layer
extracts its header from the PDU, deciphers
the information to treat the data appropri-
ately, and sends the remaining PDU to the
upper layer.

Learning about cross-layer optimization,
the principles to which it must adhere, and its
applications is important. Engineers should
analyze the PDU structures of each layer of

OS], the Internet protocol suite and the asyn-
chronous transfer mode (ATM).

7.5. Application Layer Protocols [24*, C2]
'The application layer, being the top most layer,
provides services and interfaces to interact with
users’ application. There are two types of appli-
cation layers in the OSI model: common appli-
cation service element (CASE) and specific
application service element (SASE). Example
applications include file transfer (FTP, TFTP,
NFS), remote login (Telnet, Zoho Assist,
Anydesk, TeamViewer, etc), e-mail (SMTP)
networking support (DNS), network manage-
ment (SNMP, DHCP), devices (LPD), etc.
Software engineers practicing in a net-
working domain need to understand CASE
and SASE application services, including
example applications in each category.

7.6. Design Techniques for Reliable and Efficient
Network [24*, C1.5]

Today’s information technology-based busi-
nesses need around-the-clock, reliable, effi-
cient and scalable networks and high-speed
internet availability. Catering to varied busi-
ness needs, the networks and their manage-
ment has become complex as well.

It is critical to identify network require-
ments (both business goals and technical solu-
tions) along with a road map (scalability). The
fundamental design goals should include reli-
ability, security, availability and manageability.
Engineers should expect threats and intrusions
at multiple levels and design security at mul-
tiple levels. Systems must be set up to monitor
the networks for both proper functioning and
malfunctioning; identify faults, vulnerabilities
and hacks quickly; and fix them.

Engineers must understand and learn the
nuances of designing a network while using
appropriate firewalls, LAN/VLANS, subnets,
quality of service (QoS), Demilitarized Zone
(DMZ), Spanning Tree (especially for hier-
archical network), port or network interface
controller (NIC) channel, security (both poll
security and physical security), wireless access
points, and wireless access controllers.

Even when the design and implementation
are well planned and executed, one has to be



constantly vigilant for attacks and continuously
upgrade to better systems, devices and tools.
7.7. Internet Protocol Suite [24* C3]
Data is transmitted in packets from one com-
puter to another, either in the same network
or in a different one. The Internet Protocol
suite, or TCP/IP, defines data communi-
cation between two computers connected
via the internet. The top three layers of the
OSI model (Application, Presentation and
Session layers) are merged into the applica-
tion layer, and the network layer is revised
specifically for internet functioning. Internet
Protocol is the fulcrum of today’s internet or
network layer.

Multiple variations of Internet Protocols
are designed and used for different purposes.
The protocols include TCP/IP (Transmission
Control Protocol/Internet Protocol), UDP/IP
(User Datagram protocol / Internet Protocol),
SMTP (Simple Mail Transfer Protocol), PPP
(Point to Point Protocol), FTP File Transfer
Protocol, SFTP (Secure FTP), HTTP
(Hyper Text Transfer Protocol), HTTPS
(HTTP Secure), Telnet (Terminal Network),
PoP3 (Post office Protocol 3), VOIP (Voice
over Internet Protocol), SLIP (Serial Line
Internet Protocol). It is important to know
the differences between these along with use
cases (applications where each type is used or
where it works best).

Mobile Internet Protocol is a communi-
cations protocol that conforms to an IETF
(Internet Engineering Task Force) standard
and allows users to move their mobile devices
(laptops, mobile phones, etc.) seamlessly from
one network to the other without changing
the IP address.

Internet Protocol Version 4 (IPV4) uses a
32-bit IP address, whereas IPV6 uses 128-bit
IP addresses.

Private IP addresses are translated into
public IP addresses using either NAT (net-
work address translation) or PAT (port
address translation). Both use IPV4, but PAT
uses port numbers. Different technologies
used to communicate between IPV4 and IPV6
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devices include dual-stack routers, tunneling
and NAT protocol translators.

Professional computer network architects
and programmers need to understand IPV6
addressing, routing, transitioning to IPV6 from
IPV4, dual-dress stacks, tunneling and NAT64.
7.8. Wireless and Mobile Networks [c24* C7]
Wireless networks provide the ability for
devices to connect and communicate without
the hassle of wires and cables. They also pro-
vide flexibility and ease of using the devices.
Different wireless technologies are used for
different applications:

* Wireless personal area networks (WPAN).
* Wireless local area networks (WLAN) .
* Wireless wide area networks (WWAN).

A mobile or cellular network is a radio
network spread over a specific area of land
(called a cell). The cells are served by base sta-
tions, which are fixed-location transceivers.
To avoid interference and ensure guaran-
teed bandwidth, the adjacent cells use a dif-
ferent set of frequencies. These cells, when
connected, provide wide area radio coverage.
The cell patterns take different shapes, but
squares, circles and hexagons are typical.

Different methods of data transmission
are used between channels, such as frequency
division multiple access (FDMA), time divi-
sion multiple access (TDMA), code division
multiple access (CDMA), space division mul-
tiple access (SDMA), etc.

Wireless technology has evolved over sev-
eral generations. Software Engineers are
encouraged to learn the differences among 1G,
2G, 3G, 4G and 5G technologies, along with
the core network, access system, frequency,
bandwidth and technologies used in each.
7.9. Security and Vulnerabilities [24*, C9]
Although wireless technology provides the
ease of connecting seamlessly to the network,
it is also prone to attacks unless the network is
secured. Risks to unsecured wireless networks
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include Piggybacking, Wardriving, Evil Twins
attacks, Wireless sniffing, Unauthorized com-
puter access, Shoulder sniffing and Theft of
mobile devices.

Communication over the internet via
mobile device is highly vulnerable to cyber-
attacks. In addition to wardriving, mentioned
above, typical wireless and mobile device
attacks include SMiShing, War driving, WEP
attacks, WPA attacks, Bluejacking, Reply
attacks, Blue snarfing, RF Jamming, etc.

Many precautionary measures must be
implemented and strictly followed to reduce
such risks. These measures include changing
default passwords, changing passwords fre-
quently, restricting access to authorized
users, encrypting data in the system and on
the network, and installing multiple levels
of firewalls. In addition, users must protect
and hide (not publicize) service set identifier
(SSID), use effective antivirus software, and
update and upgrade it regularly; use a virtual
private networks (VPN), use file-sharing or
system-sharing access with care, and disable
access after use; and update or upgrade the
access point or access controller, gateway and
other devices with security patches when they
become available.

8. User and Developer Human Factors

The thought processes and behaviors of soft-
ware developers typically differ from that of
software users. This content area identifies
salient parameters that matter for end users
as well as the perspective of the developers.
Human-computer interface (HCI) focuses
on designing and developing computer
technology for users to interact with com-
puting systems.

User satisfaction is measured in terms of
user experience (UX). An ideal interface
would facilitate interaction that is as natural
as the interaction between two human beings.
8.1. User Human Factors [3*% C8]

Users expect software to be robust; to have an
intuitive graphical user interface (GUI) that

guides the user through minimal, intelligent,
easy-to-follow steps to achieve the end result;
to be secure; and to provide fast, consistent
responses.

The interface should help users use the
system easily. The interface should be self-ex-
planatory and enable self-learning. The mes-
sages, whether communicating results or
errors, should be clear and complete. The
system should be able to regain its original
state if there are errors.

The system should allow users to interrupt
during the processing and undo the operation,
wherever possible.

The software engineer needs to identify
the profile of users the system; system’s func-
tionality, input and output interfaces users
use (keyboard, touch pad, audio, video, etc.)
to interact with the system, the system’s fault
tolerance, the system’s performance parame-
ters. among others.

Typically, user interface development goes
through several iterations, starting with a proto-
type. The user interface devices must be robust.

8.2. Developer Human Factors [3*,C31 - C32]

'The software lives much longer than the time
taken to develop. Invariably, the software
engineers who maintain the code are different
from those who develop. Hence, the code has
to be written with more care and for use by
other programmer / software engineer.

Meaningful and comprehensive docu-
mentation is crucial at all stages of software
lifecycle.

Defining and adopting apt coding stan-
dard for the project, and ensuring every team
member implements the same in spirit is key
for developing clean code that lives longer
with minimal maintenance.

Programming style is another key ingre-
dient of a good code. Code has to be legible,
should be like reading a good poem and easily
comprehendible. Using meaningful, consis-
tent and detailed comments is essential to
ensure code readability.

Other traits of a good software pro-
grammer include being a team player, enjoy



solving puzzles creatively, be agile, be struc-
tured / modular among others.

Good coding standards include defining
naming conventions for various types of vari-
ables, functions/procedures, comment struc-
ture/styles, indentation styles, structuring the
code into paragraphs (of related functions), etc.

“Code is read many more times than it is
written. Consider whether write-time conve-
nience is a_false economy” — Steve McConnell

“Clean code always looks like it was written
by someone who cares” — Robert (Uncle

Bob) Martin

9. Artificial Intelligence and Machine

Learning [17%]
Intelligence is the ability to acquire and cor-
relate information and knowledge to make a
correct decision for a specific task. Artificial
intelligence (AI) enables computer systems
to become intelligent, like human beings.
Machine learning (ML) enables computer sys-
tems to learn from experiences and to use the
knowledge gained to make smart decisions
— to become artificially intelligent. Deep
learning uses artificial neural network models
for learning and making predictions.

Everyone expects all systems they use to
be smart, reliable, consistent, secure and
fault-tolerant — and to get better every day.
AT and ML work toward enabling systems to
accomplish all this.

An ideal Al system would be one that a
human could not identify it as a computer;
humans would not be able to distinguish the
computer from a human being.

Several tools have been developed and are
available for creating Al systems. Using proven
tools helps engineers build a stable system faster.

9.1. Reasoning

Reasoning means analyzing sets of informa-
tion available for a given situation and deter-
mining the cause of the situation. Reaching
this conclusion is an important ability of Al,
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as the conclusion informs Al’s decision about
what to do next.

Different types of reasoning used in Al
include the following:

Deductive Reasoning is a standard and stra-
tegic approach to mapping available facts,
information and knowledge to arrive at a con-
clusion. In this approach, available facts and
information are considered to be authentic.
For example, if the premises are “All girls are
beautiful” and “Michu is a girl,” then the con-
clusion is “Michu is beautiful.”

Inductive Reasoning is about introducing a
hypothesis and creating generalizations from
the available facts and premises. Unlike deduc-
tive reasoning, in inductive reasoning, even if
the premises are certain, the conclusion would
be probable, depending on whether the induc-
tive argument is strong or weak. For example,
check the location of all engineers working
on a project and if they are from Bengaluru,
India state “All employees working on the
gaming project are from Bengaluru.”

Abductive Reasoning starts with an incom-
plete set of data or information and proceeds
to derive the most likely conclusion from the
latest data. For example, a doctor analyzes the
latest lab reports of a patient to predict the
course of the disease.

Common Sense Reasoning makes inferences
about situations based on similar past expe-
riences. For example, if a motorcycle skids
while driving on a wet road, that informa-
tion is remembered and considered during
future rides.

Monotonic Reasoning occurs when the con-
clusion remains permanent or constant after it
is reached. For example, “The Himalayas are
one of the tallest mountain ranges.”

Non-Monotonic Reasoning (NMR) occurs
when the inference changes values or direc-
tion based on new knowledge or information.
NMR is based on assumptions and deals with
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incomplete or not-known facts. For example,
the rule is “Birds fly”. But a few birds do not
fly including penguins.

Software engineers are encouraged to learn
other reasoning methods, such as metalevel
reasoning, procedural numeric reasoning, and
formal reasoning, as well.

9.2. Learning

We learn from our observations, experiments
and experiences. Enabling computers to
learn and to remember what they’ve learned
for future use is critical for building Al sys-
tems. An Al system learns when observations
and outcomes of experiments (signals) are
fed back into the system. Different types of
learning include the following:

Supervised Learning, the computer system
trains by receiving labeled (i.e., training) data.
Subsequently, when any input is provided,
the system compares it with the data it was
trained on and generates output. Naturally,
the more training data, the better the out-
come. Supervised learning uses multiple
learning techniques, including the classifica-
tion technique and the regression technique.
Supervised learning may not be able to handle
complex tasks.

Unsupervised Learning, labeled or training
data is not provided to the system. The system
has to figure out common patterns from the
input given and make inferences. The data is
analyzed in real time.

Semi-supervised Learning, the system is
trained with partly labeled and partly unla-
beled data. This type of learning has been
shown to be effective.

Reinforcement Learning is based on inter-
actions with the environment. In this type
of learning, the system receives feedback
(an error message or a reward) and learns
from that feedback. No data is provided to
the system (neither labeled nor unlabeled).
Various algorithms are produced in reinforced

learning. This is a trial-and-error method
for learning.

Software engineers working on Al are
expected to know various other learning
techniques as well, including dimension-
ality reduction learning, self-learning, feature
learning, sparse learning, anomaly detection
and robot learning, along with the key differ-
ences between the methods and the applica-
tions where each method works well.

9.3. Models

Al models are inference engines or tools
(algorithms) that can arrive at the best deci-
sions based on relevant data.

Different models are created to enable effi-
cient ML, with or without training data.
Models used in ML include the following:

Linear Regression model is based on super-
vised learning, where the relationship between
input and output variables is determined and
used. This model is commonly used in health
care and banking applications.

Logistic Regression model is a statistical
model primarily used for classifying dependent
variables from given independent variables.

Artificial Neural Networks are inspired by
biological neural networks in a brain. The sys-
tems are designed to learn naturally from the
inputs without specific rules.

Decision Tree model is used where past deci-
sions are used to arrive at a decision. The name
“tree” is used because the data is stored in the
form of a tree.

Naive Bayes model works on the assumption
that the presence of a feature does not depend
on the presence of any other feature. Spam
filtering is one of the applications that suits
this model.

Support Vector Machine (SVM), is a super-
vised ML algorithm used to analyze a limited
quantum of data. SVM is typically faster than



artificial neural networks because it works
with limited data.

Random Forest model uses multiple decision
trees for making a final decision. The random
forest model is useful for solving both regres-
sion and classification problems.

Al models are key to making the most
appropriate decisions. As different models
suit specific applications or domains, software
engineers are encouraged to learn many other
Al modelsaswell, such as Linear Discriminant
Analysis, Learning Vector Quantization,
K-nearest Neighbors (KNN), etc.

9.4. Perception and Problem-Solving

Solving a problem efficiently and quickly is
the goal of Al. Problem-solving predomi-
nantly comprises understanding user com-
mands and executing them, as humans do.
Depending on the application and problem to
be solved, Al systems use the relevant knowl-
edge base and predicate logic to identify the
most appropriate solution.

Al systems dealing with the external world,
obtain environmental data through sensors
(cameras; microphones; temperature, pres-
sure and light sensors, etc.), analyzes the data
using its knowledge base or inference engine,
and acts upon it.

Based on capabilities and functionality, Al
systems are categorized into multiple types.

Type I Al systems are designed to do
specific tasks with intelligence. Examples
include Chess games, speech and image rec-
ognition, among others.

Type II Al systems analyze the current sit-
uation or environment and do not normally
refer to previous decisions made in a similar
situation to arrive at an appropriate action.
Reactive systems or reactive machines typically
make decisions and execute commands at that
instance, referring to the existing knowledge
base. A good example is a self-driving cars.

Type 111, or self-aware, Al systems have
consciousness and are mindful. These systems
adopt the mind theory and predict the mood
of the other person or entity based on the
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person’s action or type of action. For example,
if the driver in the vehicle behind the system
honks, then the Al system might conclude
that the driver is angry or unhappy. Social and
ethical behavior is part of conscious systems.

9.5. Natural Language Processing

Natural language processing (NLP) is a crucial
part of Al systems, enabling users to interact
with the Al systems in a way that is similar to
how they interact with other humans. Al sys-
tems understand human languages and exe-
cute commands delivered in those languages.
Al systems that work on voice commands need
to understand not only the human language,
but also the slang or pronunciation of the user.

9.6. Al and Software Engineering

Software engineering and Al are mutually
related to each other in basically two ways: Al
applications in software engineering (i.e., Al
for SE) and software engineering for Al sys-
tems (i.e., SE for AI).

Al for SE aims to establish efficient ways
of building high-quality software systems by
replicating human developers’ behavior. It
ranges over almost all development stages,
from resolving ambiguous requirements to
predicting maintainability, particularly well
applied in software quality assurance and
analytics, such as defect prediction, test case
generation, vulnerability analysis, and pro-
cess assessment [15]. Although human-cen-
tric software engineering activities benefit,
engineers should be aware of limitations and
challenges inherent to the nature of Al and
ML, especially the uncertain and stochastic
behavior and the necessity of sufficiently
labeled and structured datasets [15].

'The development of Al systems is different
from traditional software systems since the
rules and system behavior of Al systems are
inferred from training data rather than written
down as program code [16]. Thus, there is a
need for particular support of SE for Al, such
as interdisciplinary collaborative teams of data
scientists and software engineers, software
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evolution focusing on large and changing engineering practices for Al are often formal-
datasets, and ethics and equity requirements  ized as patterns, such as ML software design
engineering [16]. Recommended software patterns [17].

MATRIX OF TOPICS VS. REFERENCE MATERIAL

Tanenbaum, Bos [19*]
H.Washizaki [17*]
Horowitz et al. 2007 [5*]
S McConnell [3*]
Sommerville 2016 [6*]
L. Null and J. Lobur [8*]
Articles and Journals
J.G. Brookshear [4*]
Thomas Connolly,
Carolyn Begg [22]
Kurose & Ross [24]

CLRS [18%]

Topics
1. Basic C10
Concept of

a System
or Solution

2. Computer
Architecture
and
Organization

2.1 Computer C11
Architecture

2.2 Types of C4.14,
Computer C5
Architecture

2.2.1 Von C1.9
Neumann
Architecture

2.2.2 Harward [20]
Architecture

2.2.3 Instruction C4.8.3
Set Architecture

2.2.4 Flynn’s C9.3
Architecture
or Taxonomy

2.2.5 System Cé6 Cé6
Architecture

2.3 Micro C4
Architecture
or Computer
Organization

2.3.1 Arithmetic C1.2
Logic Unit
2.3.2 Cé6
Memory Unit

2.3.3 Input / C7
Output Unit
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2.3.4 C4.2
Control Unit
3. Data c10, C2
Structures and Part
Algorithms v
3.1 Types of Data c10 S2.1-2.6
Structures
3.2 Operations on S2.1-2.6
Data Structures
3.3 Algorithms c26,
and Attributes of c27
Algorithms
3.4 Algorithm s1.1-1.3,
Complexity $3.3-3.6,
s4.1-4.8,
s5.1-5.7,
$6.1-6.3,
7.6,s11.1,
s12.1
3.5 Measurement s1.1-s3.3—
of Complexity 3.6,
s4.1-4.8,
s5.1-5.7,
$6.1-6.3,
s7.1-7.6,
s11.1,
s12.1
3.6 Designing Part
Algorithms 1V,
Part
VII
3.7 Sorting 6,
Techniques o7,
c8,
c9
3.8 Searching Cé6
Techniques
3.9 Hashing cl1.2
4. Cé6
Programming
Fundamentals
and Languages
4.1 Programming C8.4.4
Language Types
4.2 Programming C8.4.4
Syntax, Semantics,
Type Systems
4.3 Subprograms C6.3
and Coroutines
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4.4 Object- C6.5
Oriented
Programming

4.5 Distributed C6.6
Programming
and Parallel

Programming

4.6 Debugging C2.2.2

4.7 Standards C28.5,
and Guidelines C31.5

5. Operating
Systems

5.1 Processor c2,
Management c8

5.2 Memory c3
Management

5.3 Device c5

Management

5.4 Information | c4
Management

5.5 Network C4.1

Management

6. Database
Management

6.1 Schema C2.14

6.2 Data C2.3
Models and
Storage Models

6.3 Database C1.3
Management
Systems

6.4 Relational C4
Database
Management
Systems and
Normalization

6.5 Structured Ce,
Query Language C7,
C8

6.6 Data Mining C34
and Data
Warehousing

6.7 Database C22
Backup

and Recovery

7. Computer C4.1 C1
Networks and
Communications

7.1 Types C4.1 C1.21
of Computer
Networks
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7.2 Layered
Architecture
of Networks

C1.5

7.3 Open Systems
Interconnection

Model

C15

7.4 Encapsulation
and
Decapsulation

C152

7.5 Application
Layer Protocols

Cc2

7.6 Design
Techniques for
Reliable and
Efficient Network

C1.5

7.7 Internet
Protocol Suite

C3

7.8 Wireless and
Mobile Networks

C7

7.9 Security and
Vulnerabilities

C8

8. User and
Developer
Human Factors

8.1 User

Human Factors

c8

8.2. Developer

Human Factors

c31-
c32

9. Artificial
Intelligence
and Machine
Learning

C1

9.1 Reasoning

9.2 Learning

9.3 Models

9.4 Perception
and
Problem-Solving

9.5 Natural
Language
Processing

9.6 AI and
Software
Engineering
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CHAPTER 17

Mathematical Foundations

ACRONYMS
BST Binary Search Tree
CFG | Context-Free Grammar
CSG | Context-Sensitive Grammar
FSM Finite-State Machine
GCD | Greatest Common Divisor
IH Induction Hypothesis
LHS Left-Hand Side
PSG Phrase Structure Grammar
RHS Right-Hand Side
INTRODUCTION

Software engineers can write code only for
something that follows well-understood,
unambiguous logic. ‘The Mathematical
Foundations KA helps software engineers
comprehend this logic, which they trans-
late into source code. The mathematics in
this KA differ greatly from typical arith-
metic, which deals with numbers. This KA
focuses on logic and reasoning, which are the
essence of the mathematics a software engi-
neer must address.

Mathematics, in a sense, is the study of
formal systems. The word formal is associated
with preciseness, so there can be no ambig-
uous or erroneous interpretation of the facts.
Mathematics is therefore the study of all cer-
tain truths about any concept. This concept can
be about numbers, symbols, images, sounds or
video — almost anything. In short, numbers
and numeric equations aren’t the only subjects

of preciseness. On the contrary, a software
engineer must have a precise abstraction on
complex, diverse application domains.

'The Mathematical Foundations KA covers
basic techniques to identify a set of rules for
reasoning in the context of the system under
study. Anything you can deduce following
these rules is an absolute certainty within
the context of that system. This KA defines
and discusses techniques that can represent
and take forward a software engineer’s rea-
soning and judgment in a precise (and there-
fore mathematical) manner. The language and
methods of logic discussed allow software
engineers to describe mathematical proofs to
infer conclusively the absolute truth of cer-
tain concepts beyond just numbers. This KA’s
objective is to help software engineers develop
the skill to identify and describe such logic
and verify that the logic in the code is con-
sistent with abstractions. The emphasis is on
helping software engineers understand the
basic concepts rather than on developing their
arithmetic abilities.

BREAKDOWN OF TOPICS FOR
MATHEMATICAL FOUNDATIONS

'The breakdown of topics for the Mathematical
Foundations KA is shown in Figure 17.1.

1. Basic Logic [1% c1]

1.1. Propositional Logic

A proposition is a statement that is either
true or false, but not both. Consider declar-
ative sentences for which it is meaningful to
assign either of the two status values: true

17-1
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Figure 17.1. Breakdown of Topics for the Mathematical Foundations KA

or false. The following are some examples of
propositions:

* The sun is a star.
* Elephants are mammals.
* 2+3=5.

However, a + 3 = b is not a proposition, as
it is neither true nor false. Whether it is true
depends on the values of the variables 2 and 4.

The Law of Excluded Middle: For every
proposition p, either p is true, or p is false.

The Law of Contradiction: For every propo-
sition p, it is not the case that p is both true
and false.

Propositional logic is the area of logic that
deals with propositions. A #ruth table displays
the relationships between the truth values of
propositions.

A Boolean variable is a variable whose value
is either true or false. Computer bit operations
correspond to logical operations of Boolean
variables.

The basic logical operators are negation
(not, -~ p), conjunction (and, p A q), disjunc-
tion (or, p V q), exclusion (p @ q), and impli-
cation (p — q). Compound propositions may
be formed using various logical operators.

A compound proposition that is always
true is a fautology. A compound proposition

that is always false is a contradiction. A com-
pound proposition that is neither a tautology
nor a contradiction is a contingency.

Compound propositions that always have
the same truth value are called logically equiv-
alent (denoted by =). Some common logical
equivalences are the following:

Identity laws:

prT=p pvF=p

Domination laws:

pvT=T paF=F

Idempotent laws:
pvp=p pApP=pP

Double negation law:
= (—| p) = p

Commutative laws:
pvq=qVvp PAQ=EqQAp

Associative laws:
(pvqvr=pvi(qVvr)
(pArq@Ar=pAa(qar)

Distributive laws:
pvi@an=pvgalpvr
parl@v)=parqvipar)



* De Morgan’s laws:
ﬂ(pAq)Eﬂp\/ﬂq
~(pva=-pa-g

1.2. Predicate Logic

A predicate is a verb phrase template that
describes a property of objects or a relation-
ship among objects represented by the vari-
ables. For example, in the sentence Zhe flower
is red, the template is red is a predicate. It
describes a property of the flower. The same
predicate may be used in other sentences.

Predicates are often given a name (e.g., red
or simply R) that can represent the predicate
(in this case, 7ed or R can represent the pred-
icate is red). Assuming R is the name for the
predicate is red, sentences that assert an object
has the color red can be represented as R(x),
where x represents an arbitrary object. R(x)
reads as x is red.

Quantifiers allow statements about entire
collections of objects so that enumerating
each object by name is not necessary.

» 'The wuniversal quantifier Vx asserts that a
sentence is true for all values of variable
x (e.g., Vx Tiger(x) - Mammal(x) means
all tigers are mammals).

o The existential guantiﬁer Jx asserts that
a sentence is true for at least one value
of variable x (e.g., Ix Tiger(x) - Man-
eater(x) means there exists at least one
tiger that is a man-eater).

Thus, while universal quantification uses
implication, existential quantification natu-
rally uses conjunction.

A variable x introduced into a logical
expression by a quantifier is bound to the
closest enclosing quantifier. Similarly, in a
block-structured programming language,
a variable in a logical expression refers to
the closest quantifier within whose scope
it appears. For example, in Ix (Cat(x) A
Vx (Black(x))), x in Black(x) is universally
quantified. Therefore, the predicate implies
that at least one cat exists and everything
is black.
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A variable is a free variable if it is not bound
to a quantifier.

Propositional logic falls short in repre-
senting many assertions used in mathematics,
computer science and, therefore, software engi-
neering. It also fails to compare equivalence
and other relationships between propositions.
For example, the assertion “a is greater than 17
is not a proposition because one cannot infer
whether it is true or false without knowing the
value of a. Thus, propositional logic cannot
deal with such sentences. However, such asser-
tions appear quite often in mathematics, and
we want to infer information from those asser-
tions. Also, propositional logic cannot cap-
ture the pattern involved in the following two
logical equivalences: “Not all men are smokers”
and “Some men don’t smoke” Each of these
two propositions is treated independently in
propositional logic. There is no mechanism in
propositional logic to determine whether the
two are equivalent. Hence, propositional logic
treats each equivalent proposition individually
rather than apply a general formula that covers
all equivalences collectively.

Predicate logic addresses these issues. In a
sense, predicate logic (also known as first-order
logic or predicate calculus) extends propositional
logic to formulas involving terms and predicates.
2. ProofTechniques [1% c1]
A proof is an argument that rigorously estab-
lishes the truth of a statement. Proofs can
themselves be represented formally as discrete
structures.

Statements used in a proof include axioms
and postulates that are essentially the under-
lying assumptions about mathematical struc-
tures, the hypotheses of the theorem to be
proved and previously proved theorems.

* A theorem is a statement that can be
shown to be true.

* A Jemma is a simple theorem used in
proving other theorems.

* A corollary is a proposition that can be
established directly from a theorem that
has been proved.



17-4 SWEBOK® GUIDE V4.0a

* A conjecture is a statement whose truth
value is unknown.

When a conjecture’s proof is found, that
conjecture becomes a theorem. Many times,
conjectures are shown to be false and, hence,
are not theorems.

2.1. Direct Proof

Direct proof is a technique to establish that
the implication p — q is true by showing that
q must be true when p is true. For example,
to show that if 7 is odd, then 7> - 1 is even,
suppose 7 is odd for some integer £ — i.e., 7
=2k+1:

= QE+ 1) =42 + 4k + 1

As the first two terms of the Right-Hand
Side (RHS) are even numbers irrespective
of the value of %, the Left-Hand Side (LHS)
(n?) is an odd number. Therefore, #*> - 1 is
even. Direct proof can also be called Proof by
Deduction.

2.2. Proof by Contradiction

A proposition p is true by contradiction if
proved based on the truth of the implica-
tion - p — q, where q is a contradiction. For
example, to show that the sum of 2x + 1 and
2y - 1 is even, assume that the sum of 2x +
1 and 2y - 1 is odd. In other words, 2(x + y),
which is a multiple of 2, is odd. This is a con-
tradiction. Hence, the sum of 2x + 1 and 2y
- 1is even.

An inference rule is a pattern establishing
that if a set of premises are all true, then it
can be deduced that a certain conclusion
statement is true. The reference rules of addi-
tion, simplification and conjunction need to
be studied.

A closely related approach, Proof by
Contrapositive, takes the opposite approach by
assuming the conclusion is false and proving
that the hypothesis is also false. If it can be
shown that -~ q — - p is true, then p — q
must also be true.

2.3. Proof by Induction

Proof by induction is done in two parts.
First, the proposition is established to be
true for a base case — typically for the posi-
tive integer 1. Then, in the second part, it is
established that if the proposition holds for
an arbitrary positive integer 4, then it must
also hold for the next greater integer, £ + 1.
In other words, proof by induction is based
on the rule of inference that tells us that
the truth of an infinite sequence of propo-
sitions P(n), Vi € [1 ... o] is established if
first P(1) is true, and, second VYt € [2 ... ] if
P(2) — P(% + 1).

For a proof by induction, it is not
assumed that P(%) is true for all positive
integers 4. Proving a theorem or proposi-
tion only requires us to establish that if it is
assumed P(%) is true for any arbitrary pos-
itive integer %, then P(%Z + 1) is also true.
An in-depth discussion of the correctness
of induction as a valid proof technique is
beyond the scope of this KA. The following
proposition is proved using induction:

Proposition: The sum of the first # positive
odd integers S(n) is n*.

Basis Step: The proposition is true for 7 = 1
as S(1) = 12 = 1. 'The basis step is complete.

Inductive Step: The induction hypothesis
(IH) is that the proposition is true for 7 = %, %
being an arbitrary positive integer.

L1345+ +2-1D)=8
Now, it’s to be shown that S(2) — S(% + 1).
Sk+1)=1+3+5+...+Q2t-1)+2L+1)
=Sk + 2k +1)
=%+ 2k + 1) [using IH]
=k +2k+1
=(k+1)2

Thus, it is shown that if the proposi-
tion is true for zn = £, then it is also true for
n=rk+ 1.

The basis step together with the inductive
step of the proof show that S(1) is true and the
conditional statement S(%) — S(% + 1) is true
for all positive integers 4. Hence, the proposi-
tion is proved.
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Figure 17.2. Venn Diagram for Set X

2.4. Proof by Example

Proof by example is only valid when the core
of the proof is “there exists” and one needs
only to show that at least one valid instance
does exist. More generally, however, proof by
example has often been called Inappropriate
Generalization where validity is assumed to
be illustrated through one or a few examples
rather than a full proof. Showing only one or a
few specific examples where p — q is not suf-
ficient to prove that for all cases p — q.

3. Set, Relation, Function [1% c2]
Set. A set is a collection of objects called ele-
ments. A set can be represented by listing its
elements between braces (e.g., S = {1, 2, 3}).

The symbol € is used to express that an ele-
ment belongs to a set or is a member of the set.
Its negation is represented by ¢ (e.g., 1 € S,
but 4 ¢ ).

In a more compact representation of a set
using set builder notation, {x | P(x)} is the set
of all x such that P(x) for any proposition P(x)
over any universe of discourse. Examples of
important sets include the following:

e N={0,1, 2,3, ..} = the set of nonnega-
tive integers.

o Z={.,-3,-2,-1,0,1, 2,3, ...} = the set
of integers.

Finite and Infinite Set. A set with a finite
number of elements is called a finite set.
Conversely, any set that does not have a finite
number of elements in it is an infinite set. For
example, the set of all natural numbers is an
infinite set.
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Figure 17.3. Intersection of Sets X and Y’

Cardinality. The cardinality of a finite set S
is the number of elements in S. This is repre-
sented as |S] (e.g., if S = {5, 6, 7}, then |S| = 3).

Universal Set. In general, § = {x € U |
p(x)}, where U is the universe of discourse in
which the predicate P(x) must be interpreted.
The universe of discourse for a given pred-
icate is often referred to as the universal set.
Alternatively, one may define a universal set
as the set of all elements.

Set Equality. Two sets are equal if and only
if they have the same elements —

e, X=Y=Vp(pe X pe ).

Subset. X is a subset of set Y, or X is con-
tained in Y, if all elements of X are included
in Y. 'This is denoted by X < Y. In other
words, X ¢ Yif and only if Vp(pe X = p
eY)IfX={1,2,3}and Y=1{1, 2, 3, 4, 5},
then X c Y. If X is not a subset of Y] it is
denoted as X Z Y.

Proper Subset. X is a proper subset of Y
(denoted by X c Y) if X is a subset of Y but
not equal to Y—i.e., there is some element in
Y that is not in X.

In other words, X ¢ Yif and only if (X Y)
AX=2Y).IfX={1,2,3},Y={1,2,3,4},and
Z=1{1,2, 3}, then X C Y, but Xis not a proper
subset of Z. Sets X and Z are equal sets.

If X is not a proper subset of Y, it is
denoted as X ¢ V.

Superset. If X is a subset of Y, then Y is
called a superset of X. This is denoted by Yo
X—ie, Yo Xifandonlyif Xc V. If X = {1,
2,3}and Y=1{1, 2, 3,4,5}, then Y2 X

Empty Set. A set with no elements is called
an empty set. An empty set, denoted by &, is
also referred to as a null or void set.
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Figure 17.4. Union of Sets Xand Y

U

Figure 17.5. Venn Diagram for
Complement Set of X

Power Set. The set of all subsets of a set X
is called the power set of X. It is represented
as @(X). If X={a, b, ¢}, then p(X) = {OD, {a},
{b}, {c}, {a, b}, {a, ¢}, {b, ¢}, {a, b, J}. If | X]| = n,
then | (X)] = 2"

Venn Diagrams. Venn diagrams are graphic
representations of sets as enclosed areas in the
plane. For example, in Figure 17.2, the rect-
angle represents the universal set, and the
shaded region represents a set X.

3.1. Set Operations

Intersection. The intersection of two sets, X
and Y, denoted by X N, is the set of common
elements in both X and Y. In other words, X
NY={p|(pe X)A(pe Y)}. Forexample, {1,
2,31 {3, 4, 6} = {3}.

If XN Y = @, then the two sets X and Yare
said to be disjoint.

A Venn diagram for set intersection is
shown in Figure 17.3. The common portion
of the two sets represents the set intersection.

Union. The union of two sets, X and Y,
denoted by X U Y, is the set of all elements in
X, in Yor in both. In other words, X U Y= {p
| (pe X) v (pe YY)} For example, {1, 2, 3} U
{3,4,6}=1{1, 2,3, 4, 6}.

N

Figure 17.6. Venn Diagram for X - Y

It may be noted that [X U Y| = | X]| + |Y|
- | XnY).

A Venn diagram illustrating the union of
two sets is represented by the shaded region
in Figure 17.4.

Complement Set. The set of elements in the
universal set that do not belong to a given set
X is called its complement set X’. In other
words, X" ={p | (pe U) A (p ¢ X)}.

The shaded portion of the Venn diagram in
Figure 17.5 represents the complement set of X.

Set Difference or Relative Complement. The
set of elements that belong to set X but not
to set Y builds the set difference of Y from X.
'This is represented by X - Y. In other words,
X-Y={p|(peX)A(p¢ V). For example,
{1,2,3}-{3,4,6}={1, 2}.

It can be proved that X - Y=XNY"

The set difference X — Y is illustrated by
the shaded region in Figure 17.6 using a
Venn diagram.

Cartesian Product. An ordinary pair {p, ¢}
is a set with two elements. In a set, the order
of the elements is irrelevant, so {p, ¢} = {g, p}.

In an ordered pair (p, ¢), the order of occur-
rences of the elements is relevant. Thus, (p, 9)
# (¢, p) unless p = ¢. In general, (p, ¢) = (s, 2) if
andonlyif p=sand ¢ =2

Given two sets, X and Y, their Cartesian
product X x Yis the set of all ordered pairs (p,
¢) such that p € Xand g€ Y. In other words, X
xY={(p,9 | (pe X) A(ge Y)}. For example,
{a, 8} x (1,2} ={(a, 1), (4, 2), (4, 1), (4, 2)}.

3.2. Properties of Sets

Some of the important properties and laws
of sets are:



Associative Laws:
c XulYu2)=XuYuZ
c XNn(YNnZ)=XNnY)nZ

Commutative Laws:
e XuY=YuX XNY=YNnX
Distributive Laws:

c Xul¥VnNn2)=XuY)nXu 2Z)

c XNnYu2Z)=XnYYuXn2Z)

Identity Laws:

s Xuop=X XNnU=X
Complement Laws:

s XuX'=U XnX=9¢
Idempotent Laws:

e XuX=X XNnX=X
Bound Laws:

s XuU=U XNno=0

Absorption Laws:
c XUuXNnY)=X XnXuY)=X
De Morgan’s Laws:
s (XUuY)=X'NnY XnNnY)Y=XuY
3.3. Relation and Function

A relation is an association between two sets of
information. Consider a set of residents of a city
and their phone numbers. The pairing of names
with corresponding phone numbers is a rela-
tion. This pairing is ordered for the entire rela-
tion. For each pair, either the name comes first,
followed by the phone number, or the reverse.
The set from which the first element is drawn
is called the domain set, and the other set is
called the range sez. The domain is what you
start with, and the range is what you end with.

A function is a well-behaved relation. A
relation R(X, Y) is well-behaved if every ele-
ment of the domain set X corresponds to a
single element of the range set Y. Consider
domain set X as a set of people and range set
Y as their phone numbers. If a person may
have more than one phone number, then this
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Figure 17.7. Vertical Line Test for Function

relation is not a function. However, if we
draw a relation between the names of resi-
dents and their dates of birth with the name
set as domain, then this becomes a well-be-
haved relation and hence a function. This
means that while all functions are relations,
not all relations are functions. In the case of
a function given an x, there is one and exactly
one y for each ordered pair (x, y).

For example, consider the following two
relations:

4. {(3) _9)y (5) 8)7 (79 _6)) (3y 9)7 (67 3)}
B:{(5,8),(7,8), 3, 8), (6, 8)}

Are these functions as well?

In relation A4, the domain is all x-values —
ie., {3,5, 6, 73 — and the range is all y-values
—ie., {-9,-6, 3, 8, 9}.

Relation A is not a function, as there are
two different range values, -9 and 9, for the
same x-value, 3.

In relation B, the domain is the same as
for A —i.e., {3, 5, 6, 7). However, the range
is a single element — {8]. This qualifies as a
function even if all x-values are mapped to the
same y-value. Here, each x-value is distinct,
so the relation is well-behaved and is therefore
a function. Therefore, Relation B may be rep-
resented by the equation y = 8.

Whether a relation may be characterized as
a function can be verified using the vertical
line test presented below:

Given the graph of a relation, if one can
draw a vertical line that crosses the graph in
more than one place, then that relation is not
a function.
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Figure 17.8. Example of a Graph

A
e4
el
B e2 C

Figure 17.9. Example of a Multigraph
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Figure 17.10. Example of a Pseudograph
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Figure 17.11. Example of a Directed Graph
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Figure 17.12. Example of a Weighted Graph

In Figure 17.7, both lines L1 and L2 cut the
graph for the relation three times. This signi-
fies that for each of these x-values (with L1
representing one x-value and L2 representing
another), there are three different y-values.
Thus, the relation is not a function. Of course,
either L1 or L2 alone would be enough to
prove that the relation is not a function.

4. Graph and Tree [1% c10, c11]
4.1. Graph

In a graph G = (V E), V is the set of vertices
(nodes) and FE is the set of edges. Edges are
also called arcs or links.

Fis a function that maps the set of edges E
to a set of ordered or unordered pairs of ele-
ments V. In Figure 17.8, G = (V] E) where V'
={A, B, C}, E = {e1, ¢2, ¢3}, and F = {(eZ, (A,
0)), (2, (C, B)), (e3, (B, A))}.

The simple graph in Figure 17.8 consists
of a set of vertices or nodes and a set of edges
connecting unordered pairs. The edges in
simple graphs are undirected. Such graphs
are also called undirected graphs. In Figure
17.8, (e1, (A, C)) may be replaced by (e, (C,
A)), as the pair between vertices A and C
is unordered. This is true for the other two
edges as well.

In a multigraph, more than one edge may
connect the same two vertices. Two or more
connecting edges between the same pair of
vertices may reflect multiple associations
between the same two vertices. Such edges
are called parallel or multiple edges. In Figure
17.9, the edges e3 and ¢4 both connect A and
B. Figure 17.9 is a multigraph where edges ¢3
and e4 are multiple edges.

In a pseudograph, edges connecting a node to
itself are allowed. Such edges are called Zogps.

In Figure 17.10, the edge e4 both starts and
ends at B. Figure 17.10 is a pseudograph in
which ¢4 is a loop.

A directed graph G = (V, E) consists of a
set of vertices V and a set of edges E that are
ordered pairs of elements of V. A directed
graph may contain loops. In Figure 17.11, G =
(V; E) is a directed graph where V= {A, B, C},



E ={el, e2, e3}, and F = {(e1, (A, Q)), (2, (B,
C)), (e3, (B, A)).

In weighted graph G = (V; E), each edge has
a weight associated with it. The weight of an
edge typically represents the numeric value
associated with the relationship between the
corresponding two vertices. In Figure 17.12,
the weights for the edges eZ, 2 and 3 are
taken to be 76, 93 and 15, respectively. If the
vertices A, B and C represent three cities in a
state, the weights could be, for example, the
distances in kilometers between these cities.

Let G = (¥V; E) be an undirected graph with
edge set E. Then, for an edge ¢ € E where ¢ =
{u, v}, the following expressions are often used:

* u, v are said to be adjacent, neighbors, or
connected.

* Edge e is incident with vertices « and «.

* Edge e connects u and v.

* Vertices u and v are endpoints for edge e.

If vertex v € V, in the undirected graph G
= (V, E), then:

* The degree of v, deg(v), is its number of
incident edges, except that any self-loops
are counted twice.

* A vertex with degree 0 is called an iso-
lated vertex.

* A vertex of degree 1 is called a pen-
dant vertex.

Let G = (¥, E) be a directed graph. If e(u,
©v) is an edge of G, then the following expres-
sions can be used to describe the graph:

* uis adjacent to v, and v is adjacent from u.
* e comes from u and goes to v.

* ¢ connects u to v, or egoexfrom u to v.

* 'The initial vertex of e is u.

* 'The terminal vertex of e is v.

If vertex v is in the set of vertices for the
directed graph G = (¥} E), then:

* In-degree of v, deg (v), is the number of
edges going to v, i.e., for which v is the
terminal vertex.
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Figure 17.13. Example of Cycles C, and C,

Vertex | Adjacent Nodes
A B,C

B A,B,C

C A,B

Figure 17.14. Adjacency List for the Graph in
Figure 17.10

* Out-degree of v, deg'(v), is the number of
edges coming from v, i.e., for which v is
the initial vertex.

+ Degree of v, deg(v) = deg(v) + deg'(v), is
the sum of ©’s in-degree and out-degree.

* A loop at a vertex contributes 1 to both
the in-degree and the out-degree of
this vertex.

According to the definitions above, the
degree of a node is unchanged whether we
consider its edges to be directed or undirected.

In an undirected graph, a path of length #
from u to @ is a sequence of 7 adjacent edges
from vertex u to vertex v.

* A pathis a circuit if u = v.

* A path traverses the vertices along it.

* A path is simple if it contains no edge
more than once.

A cycle on 7 vertices C for any 7 > 3 is a
simple graph where V'={v, v,, ..., v }and E =
{v, v} vy, 0}, oo lo, v ) v, v

For example, Figure 17.13 illustrates two
cycles of lengths 3 and 4.

An adjacency list is a table with one row
per vertex, listing its adjacent vertices. The
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Figure 17.15. Example of a Tree

adjacency list for a directed graph maintains
a listing of the terminal nodes for each vertex.
Figure 17.14 illustrates the adjacency lists
for the pseudograph in Figure 17.10 and the
directed graph in Figure 17.11. As the out-de-
gree of vertex C in Figure 17.11 is 0, there is
no entry against C in the adjacency list.
Different representations for a graph —
e.g., adjacency matrix, incidence matrix and
adjacency lists — need to be studied.

4.2. Tree

A tree T(N, E) is a hierarchical data struc-
ture of # = | V| nodes with a specially desig-
nated root node R while the remaining » - 1
nodes form subtrees under the root node R.
The number of edges |E| in a tree are always
equal to [N| - 1.

The subtree at node X is the subgraph of
the tree consisting of node X, its descendants
and all edges incident to those descendants.
As an alternative to this recursive definition, a
tree may be defined as a connected undirected
graph with no simple circuits.

However, a tree is strictly hierarchical,
whereas a graph is flat. In a tree, an ordered
pair is built between two nodes as parent and
child. Each child node in a tree is associ-
ated with only one parent node, whereas this
restriction is meaningless for a graph, where
no parent-child association exists.

An undirected graph is a tree if and only if
there is a unique simple path between any two
of its vertices.

Figure 17.15 presents a tree 7(V, E) with
aset of nodes N={4, B, C, D, E, F, G, H, I,

J, K}. 'The edge set E is {(4, B), (4, C), (4,
D)) (By E)) (By F)) (39 G)) (C9 H)7 (C) I)) (D9
), (D, K)}.

The parent of a non-root node v is the
unique node # with a directed edge from u to
v. Each node in the tree has a unique parent
node except for the tree’s root node. While root
nodes can serve as parent nodes, they have no
parent nodes themselves. In Figure 17.15, root
node 4 is the parent node for nodes B, C and
D. Similarly, Bis the parent of £, F'and G, and
so on. The root node 4 has no parent.

A node that has children is called an internal
node. For example, in Figure 17.15, node A4
and node B are examples of internal nodes.

The degree of a node in a tree is the same as
its number of children. For example, in Figure
17.15, root node A4 and its child B are both of
degree 3. Nodes C and D have degree 2.

A node’s distance from the root node in
number of hops is called its Jevel. The root
node is at level 0. Alternately, a node X’s level
is the unique path’s length from the tree’s root
to node X. Root node A is at level 0 in Figure
17.15. Nodes B, C and D are at level 1. The
remaining nodes in Figure 17.15 are at level 2.

A tree’s height is the maximum of the levels
of tree nodes. For example, in Figure 17.15,
the tree’s height is 2.

A node is called a /eaf if it has no chil-
dren, and the degree of a leaf node is 0. For
example, in Figure 17.15, nodes E through K
are leaf nodes with degree 0.

'The ancestors or predecessors of a non-root
node X are all the nodes in the path from the
root to node X. For example, in Figure 17.15,
nodes 4 and D form the set of ancestors for J.

A node X’s successors or descendants are
all the nodes that have X as their ancestor. For
a tree with z nodes, all remaining 7 - 1 nodes
are successors of the root node. In Figure
17.15, node B has successors in E, F, and G.

If node X is an ancestor of node Y, then node Y
is a successor of X.

Two or more nodes sharing the same parent
node are called sibling nodes. For example,
in Figure 17.15, nodes E and G are siblings.
However, nodes E and /, though at the same
level, are not sibling nodes.



Two sibling nodes are at the same level, but two
nodes at the same level are not necessarily siblings.

A tree is called an ordered tree if the rela-
tive position of occurrences of children nodes
is significant. For example, a family tree is an
ordered tree if, as a rule, the name of an elder
sibling always appears before (on the left of)
the younger sibling.

In an unordered tree, the relative position
of occurrences between the siblings has no
significance and may be altered arbitrarily.

A binary tree is formed with 1 or more
nodes where there is a root node R and all the
remaining nodes form a pair of ordered sub-
trees under the root node. In a binary tree,
no internal node can have more than two
children. In addition to this criterion for
the degree of internal nodes, a binary tree
is always ordered. If the positions of the left
and right subtrees for any node in the tree are
swapped, then a new tree is created.

In Figure 17.16, the two binary trees are
different, as the positions of occurrences of 4’s
children differ in the two trees.

According to [17], a binary tree is called
a full binary tree if every internal node has
exactly two children. For example, the binary
tree in Figure 17.17 is a full binary tree, as
both internal nodes 4 and B are of degree 2.

A full binary tree that meets the definition
above is also called a szrictly binary tree.

Both binary trees in Figure 17.18 are com-
plete binary trees. The tree in Figure 17.18(a)
is a complete and full binary tree. A complete
binary tree has all its levels filled, except pos-
sibly the last one. If a complete binary tree’s
last level is not full, nodes occur from the left-
most positions available.

Interestingly, following the definitions
above, the tree in Figure 17.18(b) is a complete
but not full binary tree, as node B has only one
child in D. On the contrary, the tree in Figure
17.17 is a full but not complete binary tree,
as B’s children occur in the tree, whereas the
children of C do not appear in the last level.

A binary tree of height / is balanced if all
leaf nodes occur at levels H or H - 1. All three
binary trees in Figures 17.17 and 17.18 are
balanced binary trees.
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A A
) AC i AB

Figure 17.16. Examples of Binary Trees

D E

Figure 17.17. Example of a Full Binary Tree

A A
D E F G D

(a) (b)

Figure 17.18. Example of Complete Binary Trees

There are at most 2/ leaves in a binary tree
of height A. In other words, if a binary tree
with L leaves is full and balanced, then its
height is / = [log,L]. This is true for the two
trees in Figures 17.17 and 17.18(a), as both
trees are full and balanced. However, the tree
in Figure 17.18(b) is not a full binary tree.

A binary search tree (BST) is a special kind
of binary tree in which each node contains a
distinct key value, and the key value of each
node in the tree is less than every key value
in its right subtree and greater than every key
value in its left subtree.

A traversal algorithm is a procedure for sys-
tematically visiting every node of a binary tree.
Tree traversals may be defined recursively.
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1 4 6 8 10

Figure 17.19. A Binary Search Tree

Figure 17.20. Example of an FSM

If T'is a binary tree with root R and the
remaining nodes form an ordered pair of non-
null left subtree 7, and nonnull right subtree
T, below R, then the preorder traversal func-

tion PreOrder(7") is defined as:

PreOrder(7) = R, PreOrder (7)),
PreOrder(T,)
eqn. 1

'The recursive process of finding the preorder
traversal of the subtrees continues until the
subtrees are found to be null. Here, commas
have been used as delimiters for improved
readability.

'The postorder and in-order may be similarly
defined using eqn. 2 and eqn. 3, respectively.

PostOrder(7’) = PostOrder(T'),
PostOrder(7,), R
eqn. 2

InOrder(7T) = InOrder(7’), R, InOrder(7’,)
eqn. 3

The tree in Figure 17.19 is a binary search
tree (BST). The pre-order, post-order and
in-order traversal outputs for this BST are
given below in their respective orders:

Preorder output: 9, 5, 2, 1, 4, 7, 6, 8, 13,
11, 10, 15

Postorder output: 1, 4, 2, 6, 8, 7, 5, 10,
11, 15,13,9

In-order output: 1, 2, 4, 5, 6, 7, 8, 9, 10,
11, 13,15

5. Finite-State Machine [1% ¢13]
A computer system may be abstracted as a
mapping from state to state, driven by inputs.
In other words, a system may be considered a
transition function 70 § x I — § x O, where §
is the set of states and I and O are the input
and output functions.

If the state set § is finite, the system is
called a finite-state machine (FSM).

Alternatively, a finite state machine
(FSM) is a mathematical abstraction com-
posed of a finite number of states and transi-
tions between those states. For example, if the
domain § x I is reasonably small, then one can
specity T explicitly, using diagrams similar
to a flow graph to illustrate how logic flows
for different inputs. However, this is practical
only for machines with a very small informa-
tion capacity.

An FSM has a finite internal memory, an
input feature that reads symbols one at a time
in a sequence, and an output feature.

The operation of an FSM begins from a
start state, goes through transitions depending
on the input to different states, and can end
in any valid state. However, only a few of the
states mark a successful flow of operation.
These are called accept states.

The information capacity of an FSM is
C = log |8|. Thus, if we represent a machine
having an information capacity of C bits as an
FSM, then its state transition graph will have
|S] = 2€ nodes.



An FSM is formally defined as M = (§, I,
O, f g 50).

§ is the state set.

I is the set of input symbols.

O is the set of output symbols.

f is the state transition function.
¢ is the output function.

5, is the initial state.

Given an input x € [ on state §,, the FSM
transitions to state §,, following state transi-
tion function f; and produces an output y € O,
using the output function g.

Figure 17.20 illustrates an FSM with §  as
the start state and §, as the final state. Here, §
={8,8,8}%1={0,1} 0=1{2,3}% f1S,,0) =S,
A0 E S5A8,00= 8348, 1) = S 75, 0) -
85 /8,,1)=8;g(8,0)=3;¢(5,1) =25 g(S,
0) =3; g(S, 1) =25 g(S,,0) = 2; g(§,, 1) = 3.

"The state transition and output values for dif-
ferent inputs on difterent states may instead be
represented using a state table. The state table
for the FSM in Figure 17.20 is shown in Figure
17.21. Each pair against an input symbol rep-
resents the new state and the output symbol.
Figures 17.21(a) and 17.21(b) are alternative
representations of the FSM in Figure 17.20.
6. Grammar [1% c13]
The grammar of a natural language defines
whether a combination of words makes a
valid sentence. Unlike natural languages, the
syntax of a formal language is specified by a
well-defined set of rules. The valid sentences
of a formal language can be described by a
grammar with the help of these rules, called
production rules.

A formal language is a set of finite-length
words or strings over some finite alphabet,
and a grammar specifies the rules for forming
those words or strings. The entire set of words
that are valid for a grammar constitutes the
language for the grammar. Thus, the grammar
G is any compact, precise mathematical defi-
nition of a language L as opposed to a raw
listing of all legal sentences or examples of
those sentences in that language.
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Current | Input Current | Output | State
State State
011 Input Input
So Sy | S, 0 1101
S; 82, | 82 So 31288
Sz Sz, Sg, S] 3 2 Sz S2
S, 21 318 |8

(a) (b)

Figure 17.21. Tabular Representation of an FSM

A grammar implies an algorithm that can
generate all legal sentences of the language.
There are different types of grammars.

A phrase structure grammar (PSG)
or Type-0 grammar G = (V; 7, §, P) is a
4-tuple in which:

+ Visthevocabulary—i.e., the set of words.

« T'c Vis aset of words called terminals.

+ 8§ € N is a special word called the
start symbol.

+ Pis the set of production rules for substi-
tuting one sentence fragment for another.

There exists another set, N = V' - 7, of words
called nonterminals. 'The nonterminals repre-
sent concepts such as zoun. Production rules are
applied on strings containing nonterminals until
no more nonterminal symbols are present in
the string. The start symbol § is a nonterminal.

The language generated by a formal
grammar G, denoted by L(G), is the set of all
strings over the set J that can be generated,
starting with the start symbol, by applying
production rules until all the nonterminal
symbols are replaced in the string.

For example, let G = ({S, 4, a, 8}, {a, 4}, S,
{S§ — ad, § — b, A — aa}). Here, the set of
terminals is IV = {S, A}, where § is the start
symbol. The three production rules for the
grammar are given as P1: § = ad; P2: § —
by P3: A — aa.

Applying the production rules in all pos-
sible ways, the following words may be gener-
ated from the start symbol:
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Type 2: CFG

Type 3:

Regular Grammar

Figure 17.22. Chomsky Hierarchy of Grammars

S — aA (using PI on start symbol)
— aaa (using P3)
N — &4 (using P2 on start symbol)

Nothing else can be derived from G. Thus,
the language of the grammar G consists of
only two words: L(G) = {aaa, 5}.

6.1. Language Recognition

Formal grammars can be classified according
to the types of productions they allow. The
Chomsky hierarchy (introduced by Noam
Chomsky in 1956) describes such a classifi-
cation scheme.

From Figure 17.22, we can infer the fol-
lowing about different grammars:

1. Every regular grammar is a context-free

grammar (CFG).

2. Every CFG is a context-sensitive
grammar (CSG).

3. Every CSG is a phrase structure
grammar (PSG).

Context-Sensitive Grammar (CSG): All
fragments in the RHS are either longer than
the corresponding fragments in the LHS or
empty; in other words, if # — a4, then || < |a]
or a = @. A formal language is context-sensi-
tive if a CSG generates it.

Context-Free Grammar (CFG): All frag-
ments in the LHS are of length 1; in other
words, if 4 — a, then 4| =1 forall 4 € N.
The term context-free derives from the fact

that 4 can always be replaced by a4, regardless
of the context in which it occurs. A formal
language is context-free if a CFG generates
it. Context-free languages are the theoret-
ical basis for the syntax of most programming
languages.

Regular Grammar: All fragments in the
RHS are either single terminals or a pair
built by a terminal and a nonterminal; if 4 —
a, then either a € T, a = ¢D, or a = Dc for ¢
e T,De N.

If 2 = ¢D, the grammar is called a right
linear grammar. On the other hand, if 2 = D,
the grammar is called a /eft linear grammar.
Both the right linear and left linear grammars
are regular or Type-3 grammars.

The language L(G) generated by a regular
grammar G is called a regular language.

A regular expression A is a string (or pat-
tern) formed from the following pieces of
information: z € X, the set of alphabets, €, 0,
and the operations OR (+), PRODUCT (v),
and CONCATENATION (¥). The language
of G, L(G) is equal to all those strings that
match G, L(G) = {x € Z*|x matches G}.

Foranyae X, L(a) = a; L(e) = {€}; L(0) = 0.

+ functions as an or, L(A + B) =
L(A) v L(B).

* creates a product structure, L(AB) =

L(A) * L(B).

denotes concatenation, L(A%) = {xx,

...x | x € L(A)and n > 0}.

For example, the regular expression (ad)*
matches the set of strings: {€, ab, abab, ababab,
abababab, ..}. The regular expression (aa)*
matches the set of strings on one letter @’ with
even length. The regular expression (aaa)* +
(aaaaa)* matches the set of strings of length
equal to a multiple of 3 or 5.
7. Number Theory [1% c4]
Number theory is one of the oldest branches
of pure mathematics and one of the largest.
It concerns questions about numbers, usually
meaning whole numbers, and fractional or



rational numbers. The different types of num-
bers include, for example, whole, integer,
rational, real, and complex.

7.1. Types of Numbers

Natural Numbers: 'This group of numbers
starts at 1 and continues with 2, 3, 4, 5 and
so on. Zero is not in this group. There are no
negative or fractional numbers in the group of
natural numbers. The common mathematical
symbol for the set of all natural numbers is N.

Whole Numbers: This group has all natural
numbers plus the number 0.

Unfortunately, not everyone accepts the
above definitions of natural and whole num-
bers. There is no general agreement about
whether to include 0 in the set of natural num-
bers. Many mathematicians consider that, in
Europe, the sequence of natural numbers tra-
ditionally started with 1 (0 was not even con-
sidered a number by the Greeks). In the 19th
century, set theoreticians and other mathema-
ticians started the convention of including 0 in
the set of natural numbers.

Integers: 'This group includes all the whole
numbers and their negatives. The common
mathematical symbol for the set of all integers
isZ—ie,Z={.,-3,-2,-1,0,1,2,3, ...}1

Rational Numbers: These numbers can
be expressed as a ratio of two integers. The
common symbol for the set of all rational
numbers is Q.

Rational numbers may be classified into
three types based on how the decimals act: (1)
decimals do not exist (e.g., 15); or (2) deci-
mals do exist, and they terminate (e.g., 15.6);
(3) decimals do exist, and they repeat with a
pattern, as in 1.666... (which is 5/3).

Irrational Numbers: These numbers cannot
be expressed as an integer divided by an
integer. These numbers have decimals that
never terminate and never repeat with a pat-
tern (e.g., 7 or \2).

Real Numbers: 'This group comprises all
rational and irrational numbers. The numbers
algebra uses are real numbers. The common
mathematical symbol for the set of all real
numbers is R.
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Imaginary Numbers: ‘These are all based
on the imaginary number 7. This imaginary
number is equal to the square root of -1. Any
real number multiple of 7 is an imaginary
number (e.g., 7, 54, 3.27, -2.64).

Complex Numbers: A complex number is a
combination of a real number and an imagi-
nary number in the form a + &i. The real part
is @, and 4 is called the imaginary part. The
common mathematical symbol for the set
of all complex numbers is C. For example,
2+ 3i,3 -5, 73+ 04, and 0 + 5/ are com-
plex numbers, but the latter two are equiva-
lent to real numbers. 7.3 + 0i is the same as
the real number 7.3. Similarly, 0 + 5i is same
as the imaginary number 57. All real numbers
are complex numbers with O for the imaginary
part, and all imaginary numbers are complex
numbers with O for the real part.

7.2. Divisibility

Elementary number theory involves divisi-
bility among integers. Let a, 6 € Z with a = 0.
The expression 4|4 says that a divides 4 if 3c €
Z, and the expression 4 = ac means that there
is an integer ¢ such that ¢ times @ equals 4. For
example, 3|-12 is true, but 3|7 is false.

If a divides 4, then we say that ais a factor of
b or ais a divisor of 4, and 4 is a multiple of a.

bis even if and only if 2 | 4.

Let a, d € Z with d > 0. Then a mod d
denotes the remainder r from the division
algorithm with dividend « and divisor 4, i.e.,
the remainder when a is divided by d. We can
compute (@ mod d) by a - d*|a/d], where la/d]
represents the floor of the real number.

LetZ'={ne Z|n>0}anda be Z, me
Z*.'Then a is congruent to & modulo m, written
as a= b (mod m), if and only if m | a - b.

Alternately, @ is congruent to & modulo m if
and only if (a - &) mod m = 0.

7.3. Prime Number

An integer p > 1 is prime if and only if it is not
the product of any two integers greater than
L;ie, pisprimeifp>1A-3a,be Nia>1,
b>1,a*b=p.
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The only positive factors of a prime p are
1 and p itself. The numbers 2, 13, 29, 61,
etc., are prime numbers. Nonprime integers
greater than 1 are called composite numbers. A
composite number may be composed by mul-
tiplying two integers greater than 1.

There are many interesting applications
of prime numbers; among them is the pub-
lic-key cryptography scheme, which involves
the exchange of public keys containing the
product p’y of two random large primes p and
¢ (a private key) that must be kept secret by a
given party.

7.4. Greatest Common Divisor

The greatest common divisor ged(a, 4) of inte-
gers a, b is the greatest integer 4 that is a
divisor both of 2 and of 4 — i.e.,

d = ged (a, b) for max (d: d|a A d|b).
For example, gcd (24, 36) = 12.

Integers 2 and 4 are called relatively prime or
coprime if and only if ged(a, b) = 1. For example,
neither 35 nor 6 is prime, but they are coprime
because gcd(35, 6) = 1.

A set of integers X = {i, i,, ...} is relatively
prime if all possible pairs i, i, 4 # £ drawn
from the set X are relatively prime.
8. Basics of Counting [1% c6]
The sum rule states that if a task #,can be done
in 7, ways and a second task #,can be done in
n, ways, and if these tasks cannot be done at
the same time, then there are 7, + 7, ways to
do either task.

* If 4 and B are disjoint sets, then |4 U
B|=|4| + |B|.

* In general if A1, A2, ..., An are disjoint
sets, then |41 W A2 U ... U dn| = |41] +
|[42] + ... + |4n|.

If 200 athletes do sprint events and 30
other athletes participate in the long jump
event, then how many ways are there to

pick one athlete who is either a sprinter or a
long jumper?

Using the sum rule, the answer would be
200 + 30 = 230.

The product rule states that if a task 7, can
be done in 7, ways and a second task #,can be
done in 7, ways after the first task has been
done, then there are 7, * 7, ways to perform
the procedure.

* If 4 and B are disjoint sets, then |4 x B|
= 4] " |B].

* In general, if 41, A2, ..., An are disjoint
sets, then |41 x A2 x ... x An| = |A1] *
|[A42] * ... " | 4n|.

1£200 athletes do sprint events and 30 other
athletes participate in the long jump event,
then how many ways are there to pick two ath-
letes so that one is a sprinter and the other is a
long jumper?

Using the product rule, the answer would
be 200 * 30 = 6,000.

'The principle of inclusion-exclusion states that
if a task #,can be done in 7, ways and a second
task #,can be done in 7, ways at the same time
with ¢, then to find the total number of ways
the two tasks can be done, one must subtract the
number of ways to do both tasks from 7, + 7.

*+ If A and B are not disjoint, |4 U B| = |4|
+|B| - |4 B|.

In other words, the principle of inclu-
sion-exclusion aims to ensure that the objects
in the intersection of two sets are not counted
more than once.

Recursion is the general term for defining
an object in terms of itself. There are recur-
sive algorithms, recursively defined functions,
relations, sets, etc.

A recursive function is a function that calls
itself. For example, we can define f{n) = 3 * f(n
-1)forall e Nand » = 0and f0) = 5.

An algorithm is recursive if it solves a
problem by reducing it to an instance of the
same problem with a smaller input.

A phenomenon is said to be random if
individual outcomes are uncertain but the



long-term pattern of many individual out-
comes is predictable.

The probability of any outcome for a
random phenomenon is the proportion of
times the outcome would occur in a very long
series of repetitions.

'The probability P(4) of any event A satis-
fies 0 = P(4) < 1. Any probability is a number
between 0 and 1. If § is the sample space in
a probability model, then P(§) = 1. All pos-
sible outcomes together must have a proba-
bility of 1.

Two events are disjoint if they have no out-
comes in common and so can never occur
together. If 4 and B are two disjoint events,
P(A or B) = P(4) + P(B). This is known as the
addition rule for disjoint events.

If two events have no outcomes in common,
the probability that one or the other occurs is
the sum of their individual probabilities.

Permutation is an arrangement of objects
in which the order matters without repeti-
tion. For example, one can choose » objects in
a particular order from a total of 7 objects by
using "P ways, where "P = n! / (n - 7)!. Various
notations, such as "P and P(n, 7), are used to
represent the number of permutations of a set
of 7 objects taken r at a time.

Combination is a selection of objects in
which the order does not matter without rep-
etition. This is different from a permutation
because the order does not matter. If only the
order is changed (and not the members), no
new combination is formed. One can choose
7 objects in any order from a total of 7 objects
using "C ways, where "C = n!/ [r!* (n - 7)!].
9. Discrete Probability [1% ¢7]
Probability is the mathematical description of
randomness. Basic definitions of probability
and randomness are provided in the previous
section. Here, we start with the concepts
behind probability distribution and discrete
probability.

A probability model is a mathematical
description of a random phenomenon con-
sisting of two parts: a sample space § and a
way of assigning probabilities to events. The

MATHEMATICAL FOUNDATIONS 17-17

sample space defines the set of all possible
outcomes, whereas an event is a subset of a
sample space representing a possible outcome
or a set of outcomes.

A random variable is a function or rule that
assigns a number to each outcome. Basically,
it is a symbol that represents the outcome of
an experiment. For example, X could be the
number of heads when the experiment is flip-
ping a coin #z times. Similarly, § could be
the speed of a passing car as measured on a
radar detector.

The values for a random variable could
be discrete or continuous, depending on the
experiment. A discrete random variable can
hold all possible values (i.e., can represent
all possible outcomes) without missing any,
although it might take an infinite amount
of time. A continuous random variable is
used to measure an uncountable number
of values even when an infinite amount of
time is given.

For example, if random variable X rep-
resents an outcome that is a real number
between 1 and 100, then X may have an
infinite number of values. Therefore, one can
never list all possible outcomes for X, even if
an infinite amount of time is allowed. Here,
X is a continuous random variable. On the
other hand, for the same interval of 1 to 100,
another random variable Y can be used to list
all integer values in the range. Here, Yis a dis-
crete random variable.

An uppercase letter, say X, will represent
the name of the random variable. Its lowercase
counterpart, x, will represent the value of the
random variable.

'The probability that the random variable X
will equal x is:

P(X = x) or, more simply, P(x).

A Probability Distribution  (Density)
Function (PDF) is a table, formula or graph
that describes the values of a random vari-
able and the probabilities associated with
these values. Probabilities associated with
discrete random variables have the following
properties:
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X 1 2 3 4 5 6

P(x) 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

Figure 17.23. A Discrete Probability Function for
Rolling a Die

* 0<Plx)<s1lforallx
* XP(x)=1

A discrete probability distribution can be rep-
resented as a discrete random variable.

'The mean p of a probability distribution model
is the sum of the product terms for individual
events and their outcome probability. In other
words, for the possible outcomes x, x,, ...,
% in a sample space § if p, is the probability
of outcome x,, the mean of this probability
would be yp = wp, +xp,+ ...+ x p . The mean
of the probability density for the distribution
in Figure 17.23 would be the following:

1% (1/6) + 2% (1/6) + 3 * (1/6) + 4 * (1/6) +
5 (1/6) + 6 * (1/6)
=21%(1/6) = 3.5

Here, the sample space refers to the set of
all possible outcomes.

'The variance 6> of a discrete probability model
is 07 = (x, — p)’p, + (x, = p)’p, + ... + (s, — p)’p,.
'The standard deviation, G, is the square root of
the variance. For the probability distribution
in Figure 17.23, the variation ¢ would be the
following:

o’ =[(1 -3.5?2*1/6) + (2 —3.5)?2*(1/6)
+(3-3.52*(1/6) + (4-3.52*1/6) + (5
-3.5)2*(1/6) + (6 —3.5)** (1/6)]

6.25 + 2.25 + 0.25 + 0.5 + 2.25
+6.25) *(1/6)
17.5*(1/6)

=2.90
*. standard deviation s = 1.70

These numbers aim to derive the average
value from repeated experiments. This is based

on the most important principle in probability
— i.e., the average value from repeated exper-
iments is likely to be close to the expected
value of one experiment. Moreover, the
average value is more likely to be closer to the
expected value of any one experiment as the
number of experiments increases.

10. Numerical Precision, Accuracy, and Error
[2%, 1]

The main goal of numerical analysis is to
develop efficient algorithms for computing
precise numerical values of functions, as well
as finding solutions to algebraic and differen-
tial equations, optimization problems, etc.

Digital computers can store finite num-
bers only. A digital computer cannot repre-
sent any infinitely large number — be it an
integer, rational number, or any real or com-
plex number [see section 7, Number Theory].
The mathematics of approximation is critical
for working with numbers in the finite range
a computer can handle.

Each number in a computer is assigned a
location (e.g., an address or register) and con-
sists of a quantity of binary digits, or bits. A
£-bit location can store any of NV = 2* different
numbers. A 32-bit location can store any of
N = 2% = 4.3 x 10° different numbers, while
a 64-bit location can store any of N = 2% =
1.84 x 10" different numbers. The question
is how to distribute those numbers for max-
imum efliciency and accuracy in practical
computations.

One choice is to distribute the numbers
evenly, leading to fixed-point arithmetic. In
this system, the first bit represents the sign,
and the remaining bits represent magnitude.
The decimal point — more appropriately, the
binary point (the transition between whole
and fractional values) — can be anywhere.
Integer numbers are represented by placing
the binary point immediately to the right of
the least significant bit, and integer num-
bers between -2#'-1 and 2! can be stored.
Placing the binary point to the left of the least
significant bit allows non-integer values to be
represented.



Another choice is to space the numbers
closely together, say with a uniform gap of
27, and thereby distribute the total NV num-
bers uniformly over the interval -2 < x <
27 N. Real numbers lying between the gaps
are represented by either rounding (meaning
the closest exact representative) or chopping
(meaning the exact representative immediately
below — or above, if negative — the number).

Numbers outside the range must be rep-
resented by the largest (or largest negative)
number that can be represented. This becomes a
symbol for overflow, which occurs when a com-
putation produces a value outside the range.

When processing speed is a significant bot-
tleneck, fixed-point representations can be an
attractive and faster alternative to the more
cumbersome floating-point arithmetic most
commonly used in practice.

Accuracy and precision are important
terms in numerical analysis.

Accuracy is the closeness with which a mea-
sured or computed value agrees with the
true value.

Precision, on the other hand, is the close-
ness with which two or more measured or
computed values for the same thing agree. In
other words, precision is the closeness with
which a number represents an exact value.

Let x be a real number, and let x* be an
approximation. The absolute error in the approx-
imation x*=~ xis defined as | x*- x |. The relative
error is defined as the ratio of the absolute error
to the size of x —i.e., |x* - x| / | x | — which
assumes x # 0; otherwise, relative error is not
defined. For example, 1,000,000 is an approx-
imation of 1,000,001 with an absolute error of
1 and a relative error of 107, whereas 10 is an
approximation of 11 with an absolute error of
1 and a relative error of 0.1. Typically, relative
error is more intuitive and the preferred deter-
miner of the size of the error. The present con-
vention is that errors are always > 0 and are = 0
if and only if the approximation is exact.

An approximation x* has £ significant dec-
imal digits if its relative error is < 5 x 107
This means that the first £ digits of x* fol-
lowing its first nonzero digit are the same as
those of .
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Significant digits are the digits of a number
that are known to be correct. In a measure-
ment, one uncertain digit is included. For
example, measurement of length with a ruler
of 15.5 mm with +0.5 mm maximum allow-
able error has two significant digits, whereas a
measurement of the same length using a cal-
iper and recorded as 15.47 mm with +0.01
mm maximum allowable error has three sig-
nificant digits.

11. Algebraic Structures

This section introduces a few representa-
tions used in higher algebra. An algebraic
structure consists of one or two sets closed
under some operations and satistying several
axioms, including none. Group, monoid, ring
and lattice are examples of algebraic struc-
tures. Group, monoid and ring are defined in
this section.

11.1. Group

A set § closed under a binary operation °
forms a group if the binary operation satisfies
the following four criteria:

* Associative: Va, 4, c € §, the equation (a *
b)*c=a-(b°c) holds.

* Identity: There exists an identity element
Ie Ssuchthatforallae S,I*a=a*I=a.

* Inverse: Every element ¢ € S has an
inverse 4’ € § with respect to the binary
operation, ie., a * 4’ = I, for example,
the set of integers Z with respect to the
addition operation is a group. The iden-
tity element of the set is O for the addi-
tion operation. In Vx € Z, the inverse of x
would be —x, which is also included in Z.

* Closure property: Va, 6 € §, the result of
the operationa * b € §.

A group that is commutative i.e., a® b=
a is known as a commutative or Abelian group.

The set of natural numbers N (with the
operation of addition) is not a group because
there is no inverse for any x > 0 in the set of
natural numbers. (The third criterion, the
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inverse criterion, is violated.) However, the set
of natural numbers has some structure.

Sets with an associative operation (the first
criterion) are called semigroups; if they also have
an identity element (the second criterion), they
are called monoids. The set of natural numbers
under addition is an example of a monoid, a
structure that is not quite a group because it
is missing the requirement that every element
have an inverse under the operation.

A monoid is a set § that is closed under a
single associative binary operation * and has
an identity element I € § such that forall a €
S,I*a=a°I=a. A monoid must contain at
least one element. The set of natural numbers
N forms a commutative monoid under addi-
tion with identity element 0. The same set of
natural numbers N also forms a monoid under
multiplication with identity element 1. The
set of positive integers P forms a commuta-
tive monoid under multiplication with iden-
tity element 1.

It may be noted that, unlike those in a
group, elements of a monoid need not have
inverses. A monoid can also be considered a
semigroup with an identity element.

A subgroup is a group H contained within
a bigger group, G, such that the identity ele-
ment of G is contained in A, and whenever
h, and 4, are contained in H, so are A, * A,
and 4, Thus, the elements of H, equipped
with the group operation on G restricted to
H, form a group.

Given any subset § of a group G, the sub-
group generated by § consists of products
of elements of § and their inverses. It is the
smallest subgroup of G containing §. For
example, let G be the Abelian group whose
elements are G = {0, 2, 4, 6, 1, 3, 5, 7} and
whose group operation is addition modulo 8.
This group has a pair of nontrivial subgroups:
J=1{0,4}and H={0, 2, 4, 6}, where Jis also a
subgroup of H.

In group theory, a cyclic group is a group
that can be generated by a single element,
in the sense that the group has an element a
(called the generator of the group) such that,
when this element is written multiplicatively,
every element of the group is a power of a.

A group G is cyclic if G = {a" for any
integer 7).

Since any group generated by an element in
a group is a subgroup of that group, showing
that the only subgroup of a group G that con-
tains a is G itself suffices to show that G is
cyclic. For example, the group G = {0, 2, 4, 6,
1, 3, 5, 7}, with respect to addition modulo 8
operation, is cyclic. The subgroups J = {0, 4}
and H = {0, 2, 4, 6} are also cyclic.

11.2.Ring

If we take an Abelian group and define a
second operation on it, a new structure is
found that is different from just a group. If
this second operation is associative and is dis-
tributive over the first, then we have a ring.

A ring is a triple of the form (§, +, *), where
(8, +) is an Abelian group, (S, *) is a semigroup
and ° is distributive over +; i.e.,, V 4, b, c € S,
the equation a* (6 +¢) = (a* &) + (a * ¢) holds.
Further, if ¢ is commutative, then the ring is
said to be commutative. If there is an identity
element for the * operation, then the ring is
said to have an identity.

As an example, (Z, +, ¥), ie., the set of
integers Z with the usual addition and mul-
tiplication operations, is a ring. As (Z, ) is com-
mutative, this ring is a commutative or Abelian
ring. The ring has 1 as its identity element.

Note that the second operation may not
have an identity element, nor do we need to
find an inverse for every element with respect
to this second operation. As for what distrib-
utive means, intuitively, it is what we do in
elementary mathematics when we perform
the following operation: @ * (6 + ¢) = (a * &)
+(a™ o).

A field is a ring for which the elements of
the set, excluding 0, form an Abelian group
with the second operation. A simple example
of a field is the field of rational numbers (Q, +,
*) with the usual addition and multiplication
operations. The numbers are of the form a/b €
R, where a, 4 are integers and 4 # 0. The addi-
tive inverse of such a fraction is simply -a/,
and the multiplicative inverse is &/, provided
that a # 0.



12. Engineering Calculus

Calculus is a branch of mathematics that deals
with study of continuous transition, deriva-
tives and integrals of functions using methods
originally based on the summation of infin-
itesimal differences. Engineering Calculus
focuses on learning analytical geometry and
vectors for engineering applications.

Engineering  Calculus  includes  the
following:

e Limits

* Continuity

* Differentiation

* Integration

* Transcendental functions
* Vector calculus

Limits are the building blocks of calculus.
For a function f(x), the limit of the function
at a point a is the value the function achieves
at that point.

L =1limf(x)

A function is said to be Continuous on the
interval [a, b] if it is continuous at each point
in the interval.

lim f(x) = f (a)

The two major elements of calculus are dif-
ferential calculus and integral calculus.

* Differential calculus analyzes the rate
of change of one quantity in rela-
tion to the rate of change of another.
Geometrically, it is the slope of the line
tangent to the graph of the function. The
rate of change of y with respect to x is
expressed as dy/dx.

* Integral calculus analyzes such con-
cepts as the area or volume enclosed by
a function.

A transcendental function, in contrast to an
algebraic function, is an analytic function that
does not satisfy a polynomial equation.
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Vector calculus deals with the differenti-
ation and integration of vector fields in the
three-dimensional Euclidean space.

Software engineers are encouraged to
learn Engineering Calculus with case studies.
These concepts are required for analyzing and
extrapolating data.

13.New Advancements
13.1.C omputational Neurosciences

Computational Neurosciences is a branch of
Neurosciences that uses mathematical models,
computer simulations and brain abstraction to
understand and analyze cognitive abilities of
the nervous systems. This enables the learning
of control theory, cybernetics, quantitative
psychology, machine learning, artificial intel-
ligence, creativity, imagination, and connec-
tionism among others.

The central assumption of computa-
tional neuroscience is that the brain com-
putes. Generally speaking, a computer is
a dynamic system whose state variables
encode information about the external
world. In short, computation equals coding
plus dynamics. Some neuroscientists study
the way that information is encoded in
neural activity and other dynamic vari-
ables of the brain. Others try to charac-
terize how these dynamic variables evolve
over time. The study of neural dynamics
can be further subdivided into two sepa-
rate strands. One tradition, exemplified by
the work of Hodgkin and Huxley, focuses
on the biophysics of single neurons. The
other focuses on the dynamics of networks,
concerning itself with phenomena that
emerge from the interactions between neu-
rons. Therefore computational neuroscience
can be divided into three sub-specialties:
neural coding, biophysics of neurons, and
neural networks.

13.2. Genomics

The in-silico analysis of nucleotide
sequences of chromosome(s) from a given
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organism is called “genome”. The genome MATRIX OF TOPICS VS.
is the genetic material of living organ- REFERENCE MATERIAL

isms, containing hereditary characteris-
tics. It is constituted by DNA. Genomic —_ E
studies aim to understand how genes and 5‘ =S
genetic information are organized within the s g &
genome and how this organization determines o =
their function. § _§ E
Genomics deals with structure, func- - O~
tion, mapping, evolution and editing of |1, Basic Logic cl
genomes, including sequencing and anal- [ Proof Techniques o
ysis of genomes. - -
Significant research works are being under- 3. _Set, Relation, Function | c2
taken in the areas of preventive and thera- | 4. GraphandTree c10, c11
peutic healthcare, especially in the area of |5, Finite State Machine |c13
detection, analysis and repair of genetic d.is— 6. Grammar 13
orders. These include genome data security,
genome data sharing, efliciency in genome 7. Number Theory c4
data analysis among others. 8. Basics of Counting c6
Genomics encompasses a variety of tech- 9. Discrete Probability | c7
niques .and .aPproacheg incluqing DNA [0 Numerical Precision, ]
sequencing, bioinformatic analysis, study of | Accuracyand Error
genetic variation, computational modeling, 11. Algebraic Structures
and much more.
The advancement of DNA sequencing |12 Calculus

technologies and bioinformatic analysis has

significantly propelled progress in genomics, ——m8————
enabling detailed study of genomes across REFERENCES
various organisms.

Due to the large amount of data repre- [1*] K. Rosen, Discrete Mathematics and Its
sented by nucleotide sequences obtained from Applications, 8th ed., McGraw-Hill, 2018.
genome sequencing, informatics is required to
handle these data. And the development of [2*] EW. Cheney and D.R. Kincaid,
specific software for the field relies heavily on Numerical Mathematics and Computing,
Software Engineering. 7th ed., Addison Wesley, 2020.



CHAPTER 18

Engineering Foundations

ACRONYMS

CAD | Computer-Aided Design

CMMI | Capability Maturity Model Integration

PDF Probability Density Function

PMF | Probability Mass Function

RCA Root Cause Analysis

SDLC | Software Development Life Cycle
INTRODUCTION

The Institute of Electrical and Electronics
Engineers (IEEE) defines engineering as “the
application of a systematic, disciplined, quanti-
fiable approach to structures, machines, prod-
ucts, systems or processes” [1]. As the theory and
the practice of software engineering mature, it is
increasingly apparent that software engineering
as a discipline is based on skills and knowledge
that are common to all engineering disciplines.
'This knowledge area (KA) explores engineering
foundations pertinent to other engineering dis-
ciplines that also apply to software engineering.
The focus is on covering topics that support
other KAs while minimizing duplication of
content covered elsewhere in this Guide.

BREAKDOWN OFTOPICS FOR
ENGINEERING FOUNDATIONS

'The breakdown of topics for the Engineering
Foundations KA is shown in Figure 18.1.
1. 'The Engineering Process [2%, c4]

The engineering process, which is common to
all engineering disciplines, is discussed more

fully in the Software Engineering Economics
KA. A brief, high-level summary is included
here. Figure 18.2 shows the process flow.

'The engineering process is necessarily iter-
ative; knowledge gained at any point may be
relevant to earlier steps, triggering iteration.
These steps are briefly defined below:

* Understand the real problem —
Engineering begins when a need is recog-
nized and no existing solution meets that
need. However, the problem that needs
to be solved is not always the problem
engineers are asked to solve. Use root
cause analysis techniques (discussed later
in this KA) to discover the underlying
problem needing a solution.

* Define the selection criteria —
Engineering decisions must consider
various factors; for example, they must
consider financial criteria, as discussed
in the Software Engineering Economics
KA. Be sure to identify all relevant selec-
tion criteria.

* Identify all reasonable, technically fea-
sible solutions — 'The best solution is
rarely the first solution that comes to
mind. Therefore, consider multiple tech-
nically feasible solutions to ensure that
the optimal solution is among the set
considered.

* Evaluate each solution against the selec-
tion criteria — Determine how well each
technically feasible solution satisfies the
need while meeting the various criteria
(for example, financial criteria).

* Select the preferred option — Identify
which technically feasible solution best
satisfies the selection criteria.

* Monitor the performance of the selected

18-1
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Figure 18.1. Breakdown of Topics for the Engineering Foundations KA

solution — The engineering process nec-
essarily depends on estimates, and those
estimates can be wrong. Therefore, it is
essential to evaluate the selected alterna-
tive’s real-world performance and, if nec-
essary (and possible), decide whether one
of the other alternatives might be better.

Much of the rest of this KA elabo-

rates on details of this higher-level engi-
neering process.
2. Engineering Design [3*, c1s2-s4]
A product’s design will affect or even deter-
mine its life cycle costs. This is true for man-
ufactured products as well as for software.
Software design is guided by the features to
be implemented and the quality attributes to
be achieved. In the software engineering con-
text, “design” has a particular meaning; while
there are commonalities between engineering
design as discussed in this section and soft-
ware engineering design as discussed in the
Software Architecture KA and the Software
Design KA, there are also many differences.
For example, the scope of engineering design
is generally viewed as much broader than that
of software design.

Many disciplines involve solving problems
for which there is a single correct solution. In
engineering, most problems have many solu-
tions, and the focus is on finding a feasible

solution (among many alternatives) that best
meets the needs presented, economically.
In business, where the goal may be to foster
innovation in the marketplace, product defi-
nitions may derive from a business case.
Whichever is the origin, possible solutions
are often constrained by explicitly imposed
limitations such as cost, available resources,
and the state of discipline or domain knowl-
edge. In engineering problems, implicit con-
straints (such as the physical properties of
materials or the laws of physics) sometimes
restrict the set of feasible solutions for a
given problem.

2.1. Engineering Design in Engineering
Education

Various engineering education accreditation
bodies, including the Canadian Engineering
Accreditation Board and the Accreditation
Board for Engineering and Technology
(ABET), place great value on engineering
design, as evidenced by their high expecta-
tions in this area.

The Canadian Engineering Accreditation
Board requires specified levels of engineering
design experience and coursework for engi-
neering students and certain qualifications for
the faculty members who teach such course-
work or supervise design projects. The organi-
zation’s accreditation criteria state:
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Design: An ability to design solutions for com-
Plex, open-ended engineering problems and to
a’esign syslemx, companenls or ]Jrocesses that
meet specified needs with appropriate atten-
tion to health and safety risks, applicable stan-
dards, and economic, environmental, cultural,
and societal considerations [4, p7].

Similarly, ABET defines
design as follows:

engineering

. a process 0fd3fvising a system, component,
or process to meet desired needs and specifica-
tions within constraints. It is an iterative, cre-
ative, decision-making process in which the
basic sciences, mathematics, and engineering
sciences are ap])lied to convert resources into

solutions [5, p7]

Thus, engineering design is vital to the
training and education of all engineers. The
rest of this section focuses on various aspects
of engineering design.

2.2. Design as a Problem-Solving Activity
[3*%, c1s4, c2s1, c3s3] [6%, c551]

Engineering design is primarily a prob-
lem-solving activity. Finding a solution is
particularly challenging because design prob-
lems tend to be open-ended and vaguely
defined, and there are usually several ways to
solve the same problem. Design is generally
considered a wicked problem — a term coined

by Horst Rittel in the 1960s when design
methods were a subject of intense interest.
Rittel sought an alternative to the linear, step-
by-step process many designers and design
theorists were exploring and argued that most
problems addressed by designers are wicked
problems. As explained by McConnell, a
wicked problem presents a paradox: One can
define it only by solving it, or by solving part
of it. However, that solution is not the final
solution; a wicked problem must be solved
once to define it clearly and solved again to
create a solution that works. This has been an
important insight for software designers for
decades [6%, c5s1].

3. Abstraction and Encapsulation
[6*, c5s2-4]

Abstraction is an indispensable technique
associated with problem-solving. It refers to
both the process and the result of generaliza-
tion, where one reduces the information about
a concept, problem or observable phenomenon
in order to focus on the “big picture.” One of
the most important skills in any engineering
undertaking is the ability to frame the levels
of abstraction appropriately.

According to Voland, “Through abstrac-
tion, we view the problem and its possible
solution paths from a higher level of con-
ceptual understanding. As a result, we may
become better prepared to recognize possible
relationships between different aspects of the
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problem and thereby generate more creative
design solutions” [2*]. This is true in computer
science in general (such as hardware vs. soft-
ware) and in software engineering in partic-
ular (e.g., data structure vs. data flow).

Dijkstra states, “The purpose of abstracting
is not to be vague, but to create a new
semantic level in which one can be absolutely
precise” [7].

3.1. Lewels of Abstraction

When abstracting, we concentrate on one
“level” of the big picture at a time, confident
that we can connect effectively with levels above
and below. Although we focus on one level,
abstraction does not mean knowing nothing
about the neighboring levels. Abstraction levels
do not necessarily correspond to discrete com-
ponents in reality or in the problem domain,
but to well-defined standard interfaces such
as application programming interfaces (APIs).
Standard interfaces offer advantages such as
portability, easier software/hardware integra-
tion and wider usage.

3.2. Encapsulation

Encapsulation is a mechanism used to imple-
ment abstraction. When we are working with
one level of abstraction, the information con-
cerning the levels below and above that level
is encapsulated. This can be information about
the concept, problem, or observable phenom-
enon or the permissible operations on these
entities. Encapsulation usually means hiding
underlying details about the level above the
interface provided by the abstraction. For
example, hiding information about an object
is useful because we don’t need to know the
details of how the object is represented or how
the operations on the object are implemented.

3.3. Hierarchy

When we use abstraction in our problem
formulation and solution, we might use dif-
ferent abstractions at different times — in
other words, we work on different levels of

abstraction as the situation requires. Usually,
these different levels of abstraction are orga-
nized in a hierarchy. There are many ways to
structure a particular hierarchy, and the cri-
teria used in determining the specific content
of each layer vary depending on the individ-
uals performing the work.

Sometimes, a hierarchy of abstraction is
sequential, meaning that each layer has one
and only one predecessor (lower) layer and
one and only one successor (upper) layer —
except the upmost layer (which has no suc-
cessor) and the bottommost layer (which has
no predecessor). Sometimes, however, the
hierarchy is organized in a tree structure,
which means each layer can have more than
one predecessor layer but only one successor
layer. Occasionally, a hierarchy can have a
many-to-many structure, in which each layer
has multiple predecessors and successors. A
hierarchy never contains a loop.

A hierarchy often forms naturally in task
decomposition. Often, task analysis can be
decomposed hierarchically, starting with
the organization’s larger tasks and goals and
breaking each into smaller subtasks that can
again be subdivided. This continuous division
of tasks into smaller ones produces a hierar-
chical structure of tasks and subtasks.

3.4. Alternate Abstractions

Sometimes, multiple alternate abstractions
for the same problem are useful to keep dif-
ferent perspectives in mind. For example, we
can have a class diagram, a state chart and
a sequence diagram for the same software
at the same level of abstraction. These alter-
nate abstractions do not form a hierarchy but
complement each other, helping to illuminate
the problem and its solution. Though benefi-
cial, keeping alternate abstractions in sync is
sometimes difficult.

4. Empirical Methods and Experimental
Techniques [8* c1]

The engineering process involves pro-
posing solutions or models of solutions and



conducting experiments or tests to study those
proposed solutions or models. Thus, engineers
must understand how to create an experiment
and analyze the results to evaluate proposed
solutions. Empirical methods and experi-
mental techniques help the engineer describe
and understand variability in their observa-
tions, identify the sources of that variability,
and make decisions.

Three types of empirical studies commonly
used in engineering efforts are designed
experiments, observational studies and ret-
rospective studies. Brief descriptions of the
commonly used methods are given below.

4.1. Designed Experiment

A designed or controlled experiment tests a
hypothesis by manipulating one or more inde-
pendent variables to measure their effect on
one or more dependent variables. A precon-
dition for conducting this experiment is the
existence of a clear hypothesis. Therefore,
engineers need to understand how to formu-
late clear hypotheses.

Designed experiments allow engineers
to determine precisely how the variables are
related and, specifically, whether a cause-ef-
fect relationship exists between them. Each
combination of values of the independent vari-
ables is a treatment. The simplest experiments
have just two treatments, representing two
levels of a single independent variable (e.g.,
using a tool vs. not using a tool). More com-
plex experimental designs arise when more
than two levels, more than one independent
variable, or any dependent variables are used.

4.2. Observational Study

An observational or case study is an empirical
inquiry that makes observations of processes
or phenomena within a real-world context.
While an experiment deliberately ignores con-
text, an observational or case study includes
context. A case study is most useful when it
focuses on how and why questions, on when the
behavior of those involved cannot be manipu-
lated, and on when contextual conditions are
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relevant and the boundaries between the phe-
nomena and context are unclear.

4.3. Retrospective Study

Retrospective studies involve the analysis of
historical data, and thus are also known as
historical studies. This type of study uses data
(regarding some phenomenon) archived over
time. This archived data is then analyzed to
find relationships between variables, to pre-
dict future events or to identify trends. One
limitation is that the quality of the analysis
depends on the quality of the archived data,
and historical data may be incomplete, incon-
sistently measured or incorrect.

5. Statistical Analysis
[8*%, ¢9s1, c2s1] [9%, c11s3]

Engineers must understand how product and
process characteristics vary. Engineers often
encounter situations where the relationship
between different variables must be studied.
Most studies use samples, but the results need
to be understood with respect to the full pop-
ulation. Therefore, engineers must understand
statistical techniques for collecting and inter-
preting reliable data (sampling and analysis)
to arrive at results that can be generalized.
These techniques are discussed below.

5.1. Unit of Analysis (Sampling Units),
Population, and Sample

Unit of analysis. In any empirical study, the
researchers must make observations based
on chosen units called the units of anal-
ysis or sampling units. These units must be
clearly identified and be appropriate for the
analysis. For example, in a study of the per-
ceived usability of a software product, the user
or the software function might be the unit
of analysis.

Population. The set of all respondents or
items (possible sampling units) forms the
population. For example, for a study of the
perceived usability of a software product, the
set of all possible users forms the population.
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In defining the population, care must be
taken to differentiate the study and target
populations. The population being studied
and the population for which the results are
generalized will differ if the study involves a
sample. For example, when the study popu-
lation consists only of past observations but
generalizations are required for the future,
the study population and the target popula-
tion are not the same.

Sample. A sample is a subset of the pop-
ulation. The most crucial issue in selecting
a sample is its representativeness, including
size. The samples must be drawn in a way that
ensures draws are independent, and the rules
of drawing samples must be predefined so the
probability of selecting a particular sampling
unit is known beforehand. This method of
selecting samples is called probability sampling.

Random wariable. In statistical termi-
nology, the process of making observations
or measurements on the sampling units is
referred to as conducting the experiment. For
example, if the experiment is to toss a coin 10
times and count the number of times the coin
lands on heads, every 10 tosses of the coin
is a sampling unit and the number of heads
for a given sample is the observation or out-
come for the experiment. The outcome of an
experiment is obtained in terms of real num-
bers and defines the random variable being
studied. The attribute of the items being mea-
sured at the outcome of the experiment rep-
resents the random variable being studied; the
observation obtained from a particular sam-
pling unit is a particular realization of the
random variable. In the example of the coin
toss, the random variable is the number of
heads observed for each experiment.

The set of possible values of a random vari-
able may be finite or infinite but countable
(e.g., the set of all integers or the set of all odd
numbers). In such a case, the random variable
is called a discrete random wariable. In other
cases, the random variable under consider-
ation may take values on a continuous scale
and is called a continuous random variable.

Event. A subset of possible values of a
random variable is called an event. Suppose

X denotes some random variable; then, for
example, we may define different events such
as X zxor X < x and so on.

Distribution of a random variable. A random
variable’s range and pattern of variation are
given by its distribution. When the distribu-
tion of a random variable is known, it is pos-
sible to compute the probability of any event.
Some distributions occur commonly and are
used to model many random variables occur-
ring in practice in the context of engineering.
A few of the more commonly occurring dis-
tributions are described below:

e Binomial distribution is used to model
random variables that count the number
of successes in 7 trials carried out inde-
pendently of each other, where each trial
results in success or failure. We assume
that the chance of a successful trial
remains constant [8* c3s5].

 Poisson distribution is used to model the
count of occurrences of some event over
time or space [8%, ¢3s8].

e Normal distribution is used to model con-
tinuous or discrete random variables
by taking a very large number of values
[8% c4s5].

Concept of parameters. Parameters charac-
terize a statistical distribution. For example,
the proportion of successes in any given trial is
the only parameter characterizing a binomial
distribution. Similarly, the Poisson distribu-
tion is characterized by a rate of occurrence.
A normal distribution is characterized by two
parameters: its mean and standard deviation.

Once the values of the parameters are
known, the distribution of the random vari-
able is revealed and the chance (probability)
of any event can be computed. The proba-
bilities for a discrete random variable can be
computed through the probability mass func-
tion (PMF). The PMF is defined at discrete
points and gives the point mass — i.e., the
probability that the random variable takes
that particular value. Likewise, for a contin-

uous random variable, we have the probability
density function (PDF). The PDF needs to be



integrated over a range to obtain the proba-
bility that the continuous random variable lies
between certain values. Thus, if the PMF or
PDF is known, the chances of the random
variable taking a certain set of values may be
computed theoretically.

Concept of estimation [8%, c7s1, c7s3]. 'The
true values of the parameters of a distribution
are usually unknown and need to be estimated
from the sample observations. The estimates
are functions of the sample values and are
called szatistics. For example, the sample mean
is a statistic and may be used to estimate the
population mean. Similarly, the rate of occur-
rence of defects estimated from the sample
(rate of defects per line of code) is a statistic and
serves as the estimate of the population rate
of defects per line of code. The statistic used
to estimate a population parameter is often
referred to as the estimator of the parameter.

The results of the estimators themselves
are random. If we take a different sample, we
will likely get a different population param-
eter estimate. In the theory of estimation,
we need to understand different properties
of estimators — particularly, how much the
estimates can vary across samples and how to
choose between different ways to obtain the
estimates. For example, if we wish to estimate
the mean of a population, we might use as our
estimator a sample mean, a sample median, a
sample mode or the midrange of the sample.
Each of these estimators has different statis-
tical properties that might impact the stan-
dard error of the estimate.

Types of estimates [8*, c7s3, c8s1]. There are
two types of estimates: point estimates and
interval estimates. When we use the value of
a statistic to estimate a population parameter,
we get a point estimate. As the name indi-
cates, a point estimate gives a point value of
the parameter estimated.

Although point estimates are often used,
they leave room for many questions. For
instance, they do not tell us anything about the
possible error size or the estimate’s statistical
properties. Thus, we might need to supple-
ment a point estimate with information about
the sample size and the estimate’s variance.
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Alternatively, we might use an interval esti-
mate. An interval estimate is a random interval
whose lower and upper limits are functions of
the sample observations and the sample size.
'The limits are computed based on assumptions
regarding the sampling distribution of the
point estimate on which the limits are based.

Properties of estimators. Various statistical
properties of estimators are used to deter-
mine the appropriateness of an estimator in a
given situation. The most important proper-
ties are efficiency, consistency with respect to
the population, and lack of bias.

Tests of hypotheses [8%, c9s1]. A hypothesis
is a statement about the possible values of a
parameter. For example, suppose someone
claims that a new method of software devel-
opment reduces the occurrence of defects. The
hypothesis is that the rate of occurrence of
defects has been reduced. When we test the
hypothesis, we decide — based on sample
observations — whether it should be accepted
or rejected.

To test hypotheses, the null and alterna-
tive hypotheses are formed. The nu/l hypoth-
esis is the hypothesis of no change, denoted as
H,. The alternative hypothesis is written as H..
The alternative hypothesis may be one-sided
or two-sided. For example, if we have the null
hypothesis that the population mean is not less
than some given value, the alternative hypoth-
esis would be that it is less than that value, and
we would have a one-sided test. However, if
we have the null hypothesis that the popula-
tion mean is equal to some given value, the
alternative hypothesis would be that it is not
equal, and we would have a two-sided test
(because the true value could be either less
than or greater than the given value).

The first step in testing a hypothesis is to
compute a statistic. In addition, a region is
defined such that if the computed value of
the statistic falls within that region, the null
hypothesis is rejected. This region is called
the critical region (also known as the confidence
interval). In tests of hypotheses, we need to
accept or reject the null hypothesis based on
the evidence obtained. In general, the alter-
native hypothesis is the hypothesis of interest.
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If the computed value of the statistic does not
fall inside the critical region, then we cannot
reject the null hypothesis. This indicates that
there is insufficient evidence to believe that
the alternative hypothesis is true.

As the decision is based on sample obser-
vations, errors are possible; the types of such
errors are summarized in the following table.

Nature | Statistical decision

Accept H| Reject H,
Hjis |OK Type I error
true (probability = o)
H, is Type II error OK
false (probability = f3)

In testing hypotheses, we aim to maximize
the power of the test (the value of 1 - §) while
ensuring that the probability of a type I error
(the value of o) is maintained within a partic-
ular value — typically 5%.

Also note that construction of a test of a
hypothesis includes identifying statistic(s) to
estimate the parameter(s) and defining a crit-
ical region such that if the computed value of
the statistic falls within the critical region, the
null hypothesis is rejected.

5.2. Correlation and Regression
[8* c11s2, c11s8]

A major objective of many statistical investi-
gations is to establish relationships that make
it possible to predict one or more variables in
terms of others. Although it is desirable to
predict a quantity exactly in terms of another
quantity, that is seldom possible, and, in many
cases, we must be satisfied with estimating
the average or expected values.

The relationship between two variables is
studied using correlation and regression. Both
these concepts are explained briefly below.

Correlation. 'The degree of the linear rela-
tionship between two variables is measured
using the correlation coefficient. Computing the
correlation coeflicient is appropriate for two
variables that measure two different attributes
of the same entity. The correlation coefficient

takes a value between -1 and +1. The values
-1 and +1 indicate a situation where the asso-
ciation between the variables is perfect (i.e.,
given the value of one variable, the other can
be estimated with no error). A positive cor-
relation coeflicient indicates a positive rela-
tionship (i.e., if one variable increases, so does
the other). On the other hand, when the vari-
ables are negatively correlated, an increase of
one leads to a decrease in the other.

Always remember that correlation does
not imply causation. Thus, if two variables
are correlated, we cannot conclude that one
causes the other.

Regression. 'The correlation analysis only
measures the degree of relationship between
two variables. The analysis to find the strength
of the relationship between two variables is
called regression analysis. This analysis uses the
coeflicient of determination — a value between
0 and 1. The closer the coefficient is to 1, the
stronger the relationship between the variables.
A value of 1 indicates a perfect relationship.

6. Modeling, Simulation, and Prototyping
[3* ¢6] [10%, c10s3] [11%, c5]

Modeling is part of the abstraction process used
to represent aspects of a system. Simulation
uses a model of the system to conduct designed
experiments to better understand the system,
its behavior and relationships among subsys-
tems, as well as to analyze aspects of the design.
Modeling and simulation can be used to con-
struct theories or hypotheses about the system’s
behavior. Engineers then use those theories to
make predictions about the system. Prototyping
is another abstraction process where a partial
representation (that captures aspects of interest)
of the product or system is built. A prototype
may be an initial version of the system that
lacks the full functionality of the final version.

6.1. Modeling

A model is always an abstraction of some real
or imagined artifact. Engineers use models in
many ways as part of their problem-solving
activities. Some models are physical, such as



a made-to-scale miniature construction of a
bridge or building. Other models are non-
physical representations, such as a comput-
er-aided design (CAD) drawing of a cog or
a mathematical model for a process. Models
help engineers understand aspects of a
problem. They can also help engineers deter-
mine what they know and what they don’t
know about the problem.

There are three types of models: iconic, ana-
logic and symbolic. An iconic model is a visually
equivalent but incomplete two-dimensional or
three-dimensional representation (e.g., maps,
globes or built-to-scale models of structures
such as bridges or highways). An iconic model
resembles the artifact modeled.

In contrast, an analogic model is a function-
ally equivalent but incomplete representation.
The model behaves like the physical artifact
even though it may not physically resemble it.
Examples of analogic models include a minia-
ture airplane for wind tunnel testing or a com-
puter simulation of a manufacturing process.

Finally, a symébolic model uses a higher level
of abstraction, modeling the process or system
with symbols such as equations. The engineers
can use the symbols to understand, describe,
and predict the properties or behavior of the
final system or product. An example is the
equation F = ma.

6.2. Simulation

All simulation models are depictions of
reality. A central issue in simulation is how to
abstract data and create an appropriate simpli-
fication of reality. Developing this abstraction
is vital, as misspecification of the abstraction
would invalidate the results of the simulation
exercise. Simulation can be used for a variety
of testing purposes.

Simulation is classified based on the type of
system under study; simulation can be either
continuous or discrete. In software engineering,
the emphasis is primarily on discrete simula-
tion. Discrete simulations may model event
scheduling or process interaction. The main
components in such a model include entities,
activities and events, resources, the state of
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the system, a simulation clock, and a random
number generator. The simulation generates
output that must be analyzed.

An important problem in the development
of a discrete simulation is that of initializa-
tion. Before a simulation can be run, the ini-
tial values of all the state variables must be
provided. As the simulation designer may not
know what initial values are appropriate for the
state variables, these values might be chosen
somewhat arbitrarily. For instance, it might be
decided that a queue should be initialized as
empty and idle. This choice for an initial con-
dition can have a significant but unrecognized
impact on the simulation outcome.

6.3. Prototyping

Constructing a prototype of a system is
another abstraction process. In this case, an
initial version of the system is constructed,
often while the system is designed, which
helps the designers determine the feasibility
of their design.

A prototype has many uses, including elic-
iting requirements, designing and refining
a user interface, and validating functional
requirements. The objectives and purposes
for building the prototype will guide its con-
struction and determine the level of abstrac-
tion used.

The role of prototyping is somewhat dif-
ferent for physical systems and software. With
physical systems, the prototype might be the
first fully functional version of a system, or
it might be a model of the system. In soft-
ware engineering, prototypes are also abstract
models of part of the software. However, they
are usually not constructed with all the archi-
tectural, performance and other quality char-
acteristics expected in the finished product.
In either case, prototype construction must
have a clear purpose and be planned, mon-
itored and controlled — it is a technique to
study a specific problem within a limited con-
text [12% ¢2s8].

In conclusion, modeling, simulation and
prototyping are powerful techniques for
studying the behavior of a system from a
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given perspective. All can be used to perform
designed experiments to study various aspects
of the system. However, these are abstrac-
tions and, as such, may not model all attri-
butes of interest.

7. Measurement
[2%, pp442-447] [3%, c4s4]
[12%, ¢7s5] [13%, ¢351-2]

Knowing what to measure, how to measure
it, what can be done with measurements and
even why to measure is critical in engineering
endeavors. Everyone involved in an engi-
neering project must understand the measure-
ment methods, the measurement results and
how those results can and should be used.

Measurements can be physical, environ-
mental, economic, operational or another
sort of measurement that is meaningful to
the project. This section explores the theory
of measurement and how it is fundamental
to engineering. Measurement starts as an
abstract concept and progresses to a defini-
tion of the measurement method and then
to the actual application of that method to
obtain a measurement result. Each step must
be understood, communicated and properly
performed to yield usable data. In traditional
engineering, direct measures are often used.
In software engineering, a combination of
both direct and derived measures (defined in
7.3 below) is necessary [13%, p273].

The theory of measurement states that
measurement is an attempt to describe an
underlying empirical system. Measurement
methods specify activities that assign a value
or symbol to an attribute of an entity.

Attributes must then be defined in terms
of the operations used to identify and mea-
sure them (the measurement methods). In this
approach, a measurement method is defined
as a precisely specified operation that yields
a symbol (called the measurement result) as
part of the measurement of an attribute. To
be useful, the measurement method must be
well defined. Arbitrariness or vagueness in
the method leads to ambiguity in the mea-
surement results.

In some cases — particularly in the physical
world — the attributes we wish to measure are
easy to grasp; however, in an artificial world
like software engineering, defining attributes
might not be that simple. For example, the
attributes of height, weight, distance, etc., are
easily and uniformly understood (though they
may not be very easy to measure in all circum-
stances). In contrast, attributes such as software
size and complexity require clear definitions.

Operational definitions. 'The definition of
attributes, to start with, is often rather abstract.
Such definitions do not facilitate measure-
ments. For example, we might define a circle
as a line forming a closed loop such that the
distance between any point on this line and
a fixed interior point called the center is con-
stant. We might further say that the fixed
distance from the center to any point on the
closed loop is the circle’s radius. Though the
concept has been defined, no means of mea-
suring the radius has been proposed. The oper-
ational definition specifies the exact steps or
method used to carry out a specific measure-
ment. This can also be called the measurement
method, sometimes, a measurement procedure
might be required to be even more precise.

The importance of operational definitions
can hardly be overstated. Take the case of
the apparently simple measurement of a per-
son’s height. Unless we specify various factors
— for example, the time the height is mea-
sured (because the height of individuals varies
throughout the day), how the variability cre-
ated by hair is handled, whether the measure-
ment is taken when the person is wearing shoes
or not, the accuracy expected (to the nearest
inch, 1/2 inch, centimeter, etc.) — then even
this simple measurement will produce sub-
stantial variation. Therefore, engineers must
appreciate the need to define measurements
from an operational perspective.

7.1. Levels (Scales) of Measurement
[27, pp442-447] [12%, ¢7s5] [13%, c3s2]

Once the operational definitions have been
determined, actual measurements can be
taken. Measurement may be carried out in



four different scale types: nominal, ordinal,
interval, and ratio. Brief descriptions of each
are given below:

Nominal scale: 'This is the lowest level of
measurement and represents the most unre-
stricted assignment of symbols, which are
only labels. Nominal scales involve classifi-
cation where measured entities are put into
one of the mutually exclusive and collectively
exhaustive categories (classes). Examples of
nominal scales are the following:

* Job titles in an organization

* Automobile styles (sedan, coupe, hatch-
back, minivan, etc.)

* Software development life cycle (SDLC)
models (waterfall, iterative, Agile, etc.)

In nominal scales, no relationship among
symbols may be inferred. The only valid types
of manipulation of measures in a nominal
scale are the following:

* Determining whether two entities have
the same or different symbol (e.g., “Is
your job title the same as or different
from my job title?”)

¢ Counting the number of entities having
the same symbol (e.g., “How many
employees have the job title Software
Engineer Level 2 in this organization?”)

Statistical analyses may be carried out to
understand how entities belonging to dif-
ferent classes perform with respect to some
other variable.

Ordinal scale: Ordinal scales extend nominal
scales by requiring a strict ordering relationship
among the symbols. Ordinal scales are neces-
sarily transitive (if A > B and B > C, then A »
C). The following are examples of ordinal scales:

* Finish order in a race (1st, 2nd, 3rd)

* Probabilities expressed using terms
(remote, unlikely, even, probable,
almost certain)

* Severities expressed using terms (neg-
ligible,  marginal, critical,
catastrophic)

serious,
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* Level of agreement expressed using terms
(strongly agree, somewhat agree, neutral,
somewhat disagree, strongly disagree)

* Capability Maturity Model Integration
(CMMI) staged maturity levels

All manipulations of values on nom-
inal scales are valid on ordinal scales, while
ordinal scales also support more-than and
less-than comparisons. For example:

* Did you finish that race before, tied with
or after me?

* Is Event X the same, more or less prob-
able than Event Y?

e Is Event X the same, more or less severe
than Event Y?

* Is the CMMI staged maturity level of
Organization A the same, higher or lower
than that of Organization B?

When an ordinal scale uses numbers as
symbols — like the CMMI staged maturity
levels 1, 2, 3, 4 and 5 — those numbers cannot
be manipulated arithmetically. We cannot say
that the difference between CMMI staged
maturity level 5 and level 4 (5 - 4) compares in
any meaningful way to the difference between
level 3 and level 2 (3 - 2). Neither can we say
that CMMI staged maturity level 4 is twice as
good aslevel 2. Ordinal scales that use numbers
as symbols are commonly misused in exactly
this way — for example, to present mean and
standard deviation (e.g., “The average software
organization worldwide has a CMMI staged
maturity level of 1.763.). Such misuse can
easily lead to erroneous conclusions [13% p274].
(We can compute the median on an ordinal
scale, as this only involves counting.) Using
nonnumerical symbols, such as initial, repeat-
able, defined, managed, and optimizing (for
CMMI staged maturity levels), is preferred
because it helps prevent such mistreatment.
Properly chosen labels also better communi-
cate the meaning of each label.

Interval scale: Interval scales extend ordinal
scales by requiring that the difference between
any pair of adjacent values is constant. The
following are examples of interval scales:
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* Temperatures expressed in degrees
Celsius and Fahrenheit: The difference
between -9°C and -8°C is the same as
that between 26°C and 27°C. The differ-
ence between -9°F and -8°F is the same
as the difference between 26°F and 27°F.

* Calendar dates: The difference between
any two consecutive dates is always one
day: 24 hours.

* Shoe sizes in North America: The differ-
ence between size 3 and size 4 is the same
as the difference between a size 10 and size
11 — one-third of an inch, or 8.467 mm.

All manipulations of values on ordinal
scales are valid on interval scales, while
interval scales also support addition and sub-
traction. For example:

 The difference between -9°C and 0°C is
the same as that between 0°C and 9°C.
The difference between -50°F and O°F is
the same as that between 25°F and 75°F.

* 'The length of time between May 6
and May 9 is the same as that between
November 8 and November 11.

Interval scales support most statistical
analyses, like mean, standard deviation, cor-
relation and regression. Any manipulation
involving multiplication or division of values,
on the other hand, is meaningless because 0 on
an interval scale, if it even exists, does not rep-
resent the absence of the measured quantity.
A 0 point on an interval scale is arbitrary with
respect to the attribute measured. Consider
that 0° (both C and F) do not represent the
absence of heat (absolute zero), and a North
American size 0 shoe has non-zero length.
Therefore, 30°C cannot be interpreted as twice
as hot as 15°C, nor is a North American size
9 shoe three times longer than a size 3 shoe.
Ratio scales extend ordinal
scales by requiring the O point to represent
the absence of the measured attribute. The
following are examples of ratio scales:

Ratio scale:

* Temperature in degrees Kelvin (K)
* Shoe sizes in the Mondopoint system

(commonly used for athletic shoes, ski
boots, skates and ballet shoes); a size
270/105 shoe fits a foot 270 mm long and
105 mm wide
* Count of decision constructs (e.g., if(),
for(), while(), in a given source code file)
¢ Money

Ratio scales support all arithmetic and sta-
tistical manipulations. Values in one ratio
scale can often be trivially transformed into
corresponding values in another ratio scale
that measures the same attribute by using a
multiplication factor. Distances in inches can
be trivially transformed into centimeters,
weights in kilograms can be trivially trans-
formed into pounds, speed in knots can be
trivially transformed into kilometers per hour,
and so on.

An additional measurement scale, the abso-
lute scale, is a ratio scale with uniqueness of
measure (no transformation is possible). The
number of software engineers working on a
project is an absolute scale because there are
no other meaningful measures for numbers

of people.

7.2. Implications of Measurement Theory for

Programming Languages

Common programming languages support a
set of built-in data types, often including the
following:

* Whole number types over varying ranges:
int, integer, byte, short, long, etc.

¢ Floating-point numbers over varying
ranges with varying precision: real, float,
double, etc.

* Single characters: char

* Ordered sequences of characters: string

Many languages, although not all,
also support type-safe enumeration (e.g.,
Java’s “enum”).

Unfortunately, these languages offer no
support for measurement theory. They do not
prevent, nor even warn programmers about,
inappropriate manipulations. The whole and



floating-point number data types in pro-
gramming languages operate as ratio scales
and support the full range of manipulations:
comparison, addition, subtraction, multi-
plication, division and so on. But consider
CMMI staged maturity level expressed as
a number. In measurement theory terms, as
shown above, it is an ordinal scale, so addi-
tion, subtraction, multiplication and division
are inappropriate. If any programmer rep-
resents a CMMI staged maturity level using
a whole number data type, nothing pre-
vents the programmer from inappropriately
adding, subtracting, multiplying or dividing
that number.

'The same can be said for characters, strings
and enumerations. Programming languages
implement them as ordinal scales; how-
ever, they might only be intended for repre-
senting nominal-scale values. More-than and
less-than comparisons are allowed even when
inappropriate. The string “minivan” appears
alphabetically before the string “sedan,” but
drawing any conclusion other than the mere
alphabetical ordering of arbitrary text strings
as a result of that fact is inappropriate.

Common programming languages allow
programmers to easily write code that is inap-
propriate according to measurement theory.
As long as programming languages allow
it, programmers can and will — intention-
ally or unintentionally — misuse measure-
ment scale types. A more sensible solution
would be data-type semantics that explicitly
enforce measurement theory. For example,
a language could explicitly support nom-
inal scales, as shown in Figure 18.3 Sample
A. That language could then prevent, or at
least warn programmers against, more-than
or less-than comparisons as shown in Figure
18.3 Sample B.

If more-than or less-than comparisons are
needed, the language supports declaration
of an ordinal type as shown in Figure 18.3
Sample C. Figure 18.3 Sample D would not
trigger any error or warning. Similarly, an
interval scale could be supported, as shown in
Figure 18.3 Sample E. A ratio scale could be
supported, as shown in Figure 18.3 Sample F.
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Common programming languages have no
problem with the code shown in Figure 18.3
Sample G. On the other hand, a measurement
theory—aware programming language would
be expected to generate a compiler error
or warning with the code shown in Figure
18.3 Sample H.

Future programming languages should
enforce measurement theory and not allow
developers to manipulate measurements inap-
propriately. But until languages support mea-
surement theory, software engineers need to
at least understand it and be on the lookout for
inappropriate manipulations in, for example,
code reviews.

7.3. Direct and Derived Measures
[13* c7s5]

Measures may be either direct or derived
(sometimes called indirect measures). An
example of a direct measure is a count of how
many times an event occurred, such as the
number of defects found in a software product.
A derived measure combines direct measures
in a way that is consistent with the measure-
ment methods used for those measures. For
example, calculating the average hours spent
to repair per defect is a derived measure. In
both cases, the measurement method deter-
mines how to perform the measurement. The
scale types of those measures constrain how
they can be manipulated. When different
scale types are involved:

* The scale type of the result of the manip-
ulation can be no higher than the scale
type of the most primitive measure-
ment scale involved (e.g., a manipula-
tion involving an interval scale and a
ratio scale can only be done as if both
are interval scales and can yield no better
than an interval scale result).

* Investment is required to make the
more primitive scale type compatible
with any higher scale type (e.g., effort
is required to bring the interval scale up
to a ratio scale so the result can also be
ratio-scaled).
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nominal enum automobile style = sedan, coupe, hatchback,
minivan, suv, sports_car;
Sample A

if( thisCarStyle >= sedan ) then .. // this is not allowed

Sample B

ordinal enum CMMI_staged_level initial, repeatable,
managed, optimizing;
Sample C
if( anOrgsCMMILevel > repeatable ) then ..
Sample D

interval AirTemperatureCelsius from -120.0 to +180.0;
AirTemperatureCelsius yesterdaysHighTemp;
AirTemperatureCelsius todaysHighTemp;

if( todaysHighTemp > yesterdaysHighTemp ) { .. } // allowed
if( todaysHighTemp > yesterdaysHighTemp * 2.0 ) { .. } // not

Sample E

ratio TemperatureKelvin from 0.00 to 1000.00;
TemperatureKelvin previousReading;

defined,

TemperatureKelvin thisReading;

if( thisReading > previousReading * 2. )

{ .. } // allowed

Sample F

double priceOfBook;
double highTemperature;
highTemperature

priceOfBook; // makes no sense but is allowed

Sample G

ratio Money from -10000.00 to +10000.00;
ratio TemperatureKelvin from 0.00 to 1000.00;

Money priceOfBook;

TemperatureKelvin highTemperature;

double highTemperature;
highTemperature

priceOfBook; // not allowed

Sample H
Figure 18.3. Code Samples for Measurement Theory

7.4. Reliability and Validity [13* c3s4-5]
A basic question to ask when considering any
measurement method is whether the proposed
measurement method is truly measuring the
concept with good quality. Reliability and
validity are the two most useful criteria for
addressing this question.

'The reliability of a measurement method is the
extent to which the application of the method
yields consistent results. Reliability refers to
the consistency of the values obtained when the
same item is measured several times. When the
results agree with each other, the measurement
method is said to be reliable. Reliability usually

depends on the operational definition. It can be
quantified by using the variation index, which
is computed as the ratio between the standard
deviation and the mean. The smaller the index,
the more reliable the measurement results.
Validity refers to whether the measurement
method measures what we intend to measure. The
validity of a measurement method may be consid-
ered from three different perspectives: construct
validity, criteria validity and content validity.
7.5. Assessing Reliability [13* c3s5]
Methods for assessing reliability include
the test-retest method, the alternative form



method, the split-halves method and the
internal consistency method. The easiest of
these is the test-retest method. In this method,
we apply the measurement method twice to
the same subjects. The correlation coefficient
between the first and second set of measure-
ment results gives us the reliability of the mea-
surement method.

7.6. Goal-Question-Metric Paradigm:
Why Measure?

The final concern to discuss here regarding
measurement is the importance of under-
standing why we measure in the first place.
The Goal-Question-Metric paradigm can
be summarized with the simple observation
that a measurement should be made to sup-
port decision-making. Some measurements
support decisions in code. Other measure-
ments support decisions made by people
outside of code (e.g., process improvement
measures). The critical point is that some
decision should be made as a result of the
measurement. Many real-world software
organizations fall victim to a “measurement
for the merely curious” syndrome, where
metrics are gathered simply because they are
easy to measure and interesting to look at
when plotted in graphs. Those measurements
are not used to support any decision and
are a waste of time and energy. They should
be avoided.
8. Standards [3* ¢9s3.2]
Moore states that a standard can be the
following:

a. An object or measure of comparison
that defines or represents the magnitude
of a unit

b. A characterization that establishes allow-
able tolerances for categories of items

c. A degree or level of required excellence
or attainment

Standards are definitional in nature, estab-
lished either to further understanding and
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interaction or to acknowledge observed (or
desired) norms of exhibited characteristics or
behavior [14, p8].

Standards provide requirements, speci-
fications or guidelines that engineers must
observe so that products, processes and mate-
rials are of acceptable quality. The quali-
ties various standards dictate relate to safety,
reliability or other product characteristics.
Standards are considered critical to engineers,
who are expected to be familiar with and
use the appropriate standards for their spe-
cific discipline.

Compliance with or conformance to a
standard allows an organization to assure the
public that the organization’s products meet
the requirements contained in that standard.
Thus, standards divide organizations or their
products into those that conform to the stan-
dard and those that do not. For a standard to
be useful, conformance must add real or per-
ceived value to the product, process or effort.

Apart from supporting organizational
goals, standards also serve several other pur-
poses, such as protecting buyers, protecting
businesses, and better defining the methods
and procedures used in software engineering.
Standards also provide users with common
terminology and expectations.

There are many internationally recognized
standards-making organizations, including
the International Telecommunication Union
(ITU), the International Electrotechnical
Commission (IEC), IEEE, and the
International Organization for Standardization
(ISO).Inaddition, regional and governmentally
recognized organizations generate standards
for their region or country. For example, in the
United States, more than 300 organizations
develop standards. These include organiza-
tions such as the American National Standards
Institute (ANSI), ASTM International (for-
merly known as American Society for Testing
and Materials), SAE International (formerly
the Society of Automotive Engineers), and
Underwriters Laboratories, Inc. (UL), as well
as the US government. (For more information

on standards used in software engineering, see
Appendix B.)
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There is a set of commonly used principles
behind standards. Standards makers attempt
to reach consensus for their decisions. This
approach fosters an openness within the com-
munity of interest so that once a standard is
set, there is a good chance that it will be widely
accepted. Most standards organizations have
well-defined processes for their efforts and
adhere to them carefully. Engineers must
be aware of the existing standards and keep
abreast of any changes to those standards
over time.

In many engineering endeavors, under-
standing the applicable standards is critical,
and the law may even require that spe-
cific standards be followed. In these cases,
the standards often represent the minimal
requirements that must be met and thus are
an element of the constraints imposed on
the design effort. Therefore, the engineer
must review all current standards related
to a given endeavor and determine which
must be met. The design must then incor-
porate all constraints imposed by the appli-
cable standard.

9. Root Cause Analysis
[3*, ¢9s3-5] [13*, c5, ¢357, c9s8]

Root cause analysis (RCA) is a class of prob-
lem-solving methods for identifying under-
lying causes of undesirable outcomes. RCA
methods identify why and how an undesirable
outcome happened, allowing organizations
to take effective action to prevent recurrence.
Instead of merely addressing immediately
obvious symptoms, the organization can solve
problems by eliminating root causes. RCA
can play several important roles in software
projects, including the following:

1. Identifying the real problem to be solved
by an engineering effort

2. Exposing the underlying drivers of risk,
thus supporting project risk assessments

3. Revealing opportunities and actions for
software process improvement

4. Discovering sources of recurring defects
(defect causal analysis)

9.1. Root Cause Analysis Techniques

Several RCA techniques exist, including the
following:

e Change analysis compares situations
resulting in undesirable outcomes with
similar situations that went well. The
assumption is that the root cause will be
found in the area of difference.

* The 5-whys technique (see, for example,
[2*% c4]) starts with an undesirable out-
come and uses repeated “Why?” ques-
tion-answer cycles to isolate the root cause.

 Cause-and-effect  diagrams, sometimes
called Ishikawa diagrams [15] or fishbone
charts, break down, in successive levels of
detail, causes that potentially contrib-
uted to an undesirable outcome. Causes
are often grouped into major categories
such as people, processes, tools, mate-
rials, measurements and environment.
The diagram takes the form of a tree of
potential causes that can all result in that
undesirable outcome.

« Fault tree analysis (FTA) is a more formal
approach to cause-and-effect diagram-
ming that focuses on and/or relationships
between causes and effects. In some cases,
any one of multiple causes can drive the
effect (an “or” relationship); in other cases, a
combination of multiple causes is required
to drive the effect (an “and” relationship).
Cause-and-effect diagrams do not distin-
guish between and relationships and or
relationships; fault tree analysis does.

* Fuailure modes and effects analysis (FMEA)
forward-chains, starting with elements
that can fail and cascade into undesirable
effects. This approach contrasts with the
backward-chaining techniques above,
which start from an undesirable outcome
and work backward toward causes.

* A cause map [16] is a structured map of
cause-effect relationships that includes
an undesirable outcome along with (1)
chaining backward to driving causes and
(2) chaining forward to effects on orga-
nizational goals. Cause maps require



evidence of the occurrence of causes and
the causality of effects and are thus more
rigorous than cause-and-effect diagrams,
FTA, and FMEA.

* A current reality tree [17] is a cause-ef-
tect tree bound by the rules of logic
(Categories of Legitimate Reservation).

s Human performance evaluation posits
that human performance depends on (1)
input detection, (2) input understanding,
(3) action selection and (4) action execu-
tion. An undesirable outcome that results
from human performance can be identi-
fied from a comprehensive list of poten-
tial drivers, including cognitive overload,
cognitive underload (boredom), memory
lapse, tunnel vision or lack of a bigger
picture, complacency, and fatigue.

Additional techniques can be found in
the DOE-NE-STD-1004-92 Root Cause
Analysis Guidance Document.

9.2. Root Cause—Based Improvement

RCA is often an element in a greater pro-
cess improvement effort. Why just identify a
root cause if nothing will be done about it?
Why go through the effort of identifying the
root cause of low-importance problems? An
example of a systematic process for a larger
improvement effort incorporating RCA is
given below:

1. Select the problem to solve: Techniques
such as Pareto analysis (the “80/20
Rule”), frequency-severity prioritization
(problems that happen most frequently
and consume the most resources to rec-
tify are the best candidates), and statis-
tical process control are used to identify
a high-priority, undesirable outcome to
address. This step needs to clearly define
the problem and its significance.

2. Gather evidence about that problem
and its cause(s): Consider information
surrounding the selected undesirable
outcome, including statements or testi-
mony, relevant processes or standards,
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specifications, reports, historical trends,
experiments, or tests.

3. Identify the root cause using one or more
RCA techniques presented in 9.1. Root
Cause Analysis Techniques.

4. Select corrective action(s) that (1) prevent
recurrence, (2) are within the organiza-
tion’s ability to control, (3) meet organi-
zational goals and objectives, and (4) do
not cause other problems. More than one
candidate corrective action should be con-
sidered, and the potential actions should
eliminate the cause, reduce the probability
of the cause occurring or disconnect the
cause from the effect. Selected correc-
tive actions should generate the greatest
amount of control for the least cost.

5. Implement the selected corrective
action(s).

6. Observe the selected corrective action(s)
to ensure efficiency and effectiveness.

10. Industry 4.0 and Software Engineering

The manufacturing industry has always been
continuously changing. Industry 4.0 is set to
change the manufacturing segment signifi-
cantly, primarily focusing on custom manu-
facturing supported by artificial intelligence
(AI). This offers potential benefits for cost,
quality and efficiency. Industry 4.0’s emphasis
on digitization and Al calls for building
bespoke hardware and software and inte-
grating these with other standard systems.

'This is supported by Continuous Software
Engineering (CSE), which has been
addressing continuous manufacturing prac-
tices such as continuous planning, continuous
architecting/designing, continuous devel-
opment, continuous integration, continuous
deployments and continuous review/revision.

Software is a key component in the Industry
4.0 revolution, and engineering the software is
crucial to building robust and intelligent sys-
tems. The engineering for one product affects
others, as more devices connect with other
devices, mostly wirelessly, to provide data
and receive commands and data for further
functioning.
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Many technologies are used in Industry
4.0, including the Internet of Things (Iol),
Big data analytics, Al and machine learning,
cybersecurity, cloud computing and apps for
multiple platforms among others. Software
plays a key role in the implementation of
all these.

Continuous ~ Systems and  Software
Engineering for Industry 4.0 (CSSE 14.0)

proposes how software engineering could
be applied in Industry 4.0. Quantum com-
puting enables complex computations to be
performed faster and more cost-effectively.
The size and cost of devices that host the soft-
ware are decreasing significantly, easing the
adoption of Industry 4.0. The software will
be increasingly self-learning and proactive,
developing the ability to predict users’ wants.
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10. Industry 4.0 and
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FURTHER READINGS

A. Abran, Software Metrics and Software

Metrology. [18]

'This book provides very good information on
the proper use of the terms measure, measure—
ment method and measurement outcome. It pro-
vides strong support material for the entire
section on measurement.



18-20 SWEBOK® GUIDE V4.0a

W.G. Vincenti, What Engineers Know and
How They Know It. [19]

'This book introduces engineering foundations
through case studies showing many foun-
dational concepts in real-world engineering
applications.
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KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS

Appendix A

INTRODUCTION

'This appendix presents the specifications pro-
vided to the knowledge area (KA) editors
regarding the KA Descriptions of the Guide
to the Software Engineering Body of Knowledge,
Version 4 (SWEBOK Guide, V4). This enables
readers, reviewers and users to clearly under-
stand what specifications were used in devel-
oping this version of the SWEBOK Guide.

This appendix begins by situating the
SWEBOK Guide as a foundational document
for the IEEE Computer Society’s suite of soft-
ware engineering products and more widely
within the software engineering commu-
nity. The appendix then describes the role of
the baseline and change control. Criteria and
requirements are defined for the breakdowns
of topics, for the rationale underlying these
breakdowns and the succinct description of
topics, and for reference materials. Important
input documents are also identified, and their
role within the project is explained. Finally,
non-content issues such as submission format
and style guidelines are discussed.

THE SWEBOK GUIDE IS A
FOUNDATIONAL DOCUMENT
FORTHE IEEE COMPUTER
SOCIETY SUITE OF SOFTWARE
ENGINEERING PRODUCTS

The SWEBOK Guide is an IEEE Computer
Society flagship and structural document for
the IEEE Computer Society’s suite of software
engineering products. The SWEBOK Guide is
also more widely recognized as a foundational
document throughout the software engineering
community, notably through the official

recognition of the 2004 and 2014 versions
as ISO/IEC Technical Report 19759:2005
and 19759:2015, respectively. The list of KAs
and the breakdown of topics within each are
described and detailed in this SWEBOK Guide’s
introduction. Consequently, the SWEBOK
Guide is foundational to other initiatives within
the IEEE Computer Society, as follows:

* Thelist of KAs and the breakdown of topics
within each are also adopted by the soft-
ware engineering certification and asso-
ciated professional development products
offered by the IEEE Computer Society.
(See www.computer.org/certification.)

* The list of KAs and the breakdown of
topics are also foundational to the software
engineering curriculum guidelines devel-
oped or endorsed by the IEEE Computer
Society. (See https://www.computer.org
/volunteering/boards-and-committees
/professional-educational-activities
/curriculum-accreditation-committee)

e The Consolidated Reference List (see
Appendix C) — meaning the list of
Recommended References (to the level
of section number) that accompanies the
breakdown of topics within each KA
— is also adopted by the software engi-
neering certification and associated pro-
fessional development products offered
by the IEEE Computer Society.

BASELINE AND CHANGE CONTROL

Due to the structural nature of the SWEBOK
Guide and its adoption by other products, a
baseline was developed at the outset of the
project by a SWEBOK Steering Group. The
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baseline comprises the list of KAs, including
new ones, and the breakdown of topics for
each KA from the previous version.
Furthermore, a SWEBOK KA editors team
has been put in place for the development
of this version to handle all major change
requests to this baseline coming from the KA
editors, arising during the review process or
otherwise. Change requests must be approved
both by the SWEBOK Guide editors and by
the team before being implemented. The
team is composed of members of the initia-
tives listed above and acts under the authority
of the Engineering Discipline Committee of
the IEEE Computer Society Professional and
Educational Activities Board (PEAB).

CRITERIA AND REQUIREMENTS
FORTHE BREAKDOWN OF TOPICS
WITHIN A KNOWLEDGE AREA

* KA editors are instructed to refine the
baseline breakdown of topics to reflect
the recent development in the target area
for KAs that continue to exist from the
previous version.

* 'The breakdown of topics is expected to be
“reasonable,” not “perfect.”

* 'The breakdown of topics within a KA must
decompose the subset of the SWEBOK that
is “generally recognized.” (See below for a
more detailed discussion of this point.)

* 'The breakdown of topics within a KA
must not presume specific application
domains, business needs, sizes of organi-
zations, organizational structures, man-
agement philosophies, software life cycle
models, software technologies or soft-
ware development methods.

* 'The breakdown of topics must, as much
as possible, be compatible with the var-
ious schools of thought within software
engineering.

* 'The breakdown of topics within a KA
must be compatible with the breakdown
of software engineering generally found
in industry and in the software engi-
neering literature and standards.

* 'The breakdown of topics is expected to be
as inclusive as possible.

* 'The SWEBOK Guide adopts the position
that even though the following “themes”
are common across all KAs, they are also
an integral part of all KAs and, there-
fore, must be incorporated into the pro-
posed breakdown of topics of each KA.
These common themes are measurement,
quality (in general) and security.

* The breakdown of topics should be at most
two or three levels deep. Even though no
upper or lower limit is imposed on the
number of topics within each KA, a rea-
sonable and manageable number of topics
is expected to be included in each KA.
Emphasis should also be put on the selection
of the topics themselves rather than on their
organization in an appropriate hierarchy.

* Topic names must be significant enough
to be meaningful even when cited outside
the SWEBOK Guide.

* 'The Description of a KA will include a
chart (in tree form) describing the knowl-
edge breakdown. This chart will typically
be the first figure in the respective KA.

CRITERIA AND REQUIREMENTS
FOR DESCRIBING TOPICS

Topics need only be sufficiently described
so readers can select the appropriate refer-
ence material according to their needs. Topic
descriptions must not be prescriptive.

CRITERIA AND REQUIREMENTS
FOR REFERENCE MATERIAL

* KA editors are instructed to use the ref-
erences (to the level of section number)
allocated to their KA by the Consolidated
Reference List as their Recommended
References.

* There are three categories of refer-
ence material:

» Recommended References. The set of
Recommended References (to the level



of section number) is collectively known
as the Consolidated Reference List.

» Further Readings.

» Additional references cited in the KA
Description (e.g., the source of a quo-
tation or reference material in sup-
port of a rationale behind a particular
argument).

The SWEBOK Guide is intended by defi-
nition to be selective in its choice of topics
and associated reference material. The list
of reference material should be clearly
viewed as an “informed and reasonable
selection” rather than as a definitive list.

Reference material can be book chap-

ters, refereed journal papers, refereed

conference papers, refereed technical or
industrial reports, or any other type of
recognized artifact. References to another

KA, subarea or topic are also permitted.

Reference material must be generally

available and must not be confidential

in nature.

Reference material must be in English.

Criteria and requirements for rec-

ommended reference  material or

Consolidated Reference List:

» Collectively, the list of Recommended
References should be:

i. Complete — covering the entire
scope of the SWEBOK Guide
ii. Sufficient — providing enough

information to describe “generally
accepted” knowledge

iii. Consistent — not providing con-
tradictory knowledge or
flicting practices

iv. Credible — recognized as providing
expert treatment

v. Current — treating the subject in a
manner that is commensurate with
current, generallyaccepted knowledge

vi. Succinct — as short as possible (both
in the number of reference items and
in total page count) without failing
other objectives

Recommended reference  material

must be identified for each topic.

Each recommended reference item

con-

»

¥

»

»

»

»
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may, of course, cover multiple topics.

Rarely, a topic may be self-descriptive

and not cite a reference material item

(e.g., a topic that is a definition or a

topic for which the description itself

without any cited reference material
is sufficient for the objectives of the

SWEBOK Guide).

Each reference to the recommended

reference material should be as precise

as possible, identifying what specific
chapter or section is relevant.

A matrix of reference material (to the

level of section number) versus topics

must be provided.

'The latest versions or editions should be

used as the Recommended References

if there are multiple versions or editions.

A reasonable amount of recommended

reference material must be identified

for each KA. The following guidelines
should be used in determining how
much is reasonable:

i. If the recommended reference
materials are written in a coherent
manner, follow the proposed break-
down of topics, and use a consistent
style (e.g., list a new book based on
the proposed KA description), an
average page number target across
all KAswould be 750. However, this
target may not be attainable when
selecting existing reference mate-
rial due to differences in style and to
overlap and redundancy among the
selected reference materials.

i. In other words, the target for the
number of pages for the entire col-
lection of Recommended References
in the SWEBOK Guide is in the
range of 10,000 to 15,000 pages.

i. Another way of viewing this is that
the amount of recommended refer-
ence material would be reasonable if
it consisted of the study material for
this KA for a software engineering
licensing exam that a graduate
would pass after completing four
years of work experience.
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Generally Recognized

Established traditional practices
recommended by many
organizations

Advanced and Research

Innovative practices tested and used
only by some organizations and
concepts still being developed and
tested in research organizations

Specialized Practices Used Only
for Certain Types of Software

Figure A.1. Categories of Knowledge

+ Additional reference material can be
included by the KA editor in a “Further
Reading” list:

» ‘These materials must be related to the
topics in the breakdown rather than,
for example, to more advanced topics.

» ‘The list must be annotated (one para-
graph per reference) to explain why each
reference was included. Further Reading
could include alternative viewpoints on
a KA or a seminal treatment of a KA.

» A general guideline to be followed is 10
or fewer further readings per KA.

» ‘There is no matrix of the reference
materials listed in Further Reading and
the breakdown of topics.

* Criteria and requirements regarding
additional references cited in the KA
Description:

» The SWEBOK Guide is not a research
document, and its readership will be
varied. Therefore, a delicate balance
must be maintained between ensuring
a high level of readability within the
document and maintaining its tech-
nical excellence. Additional reference
material should, therefore, be brought
in by the KA editor only if it is nec-
essary to the discussion. For example,
the reference material might iden-
tify the source of a quotation or offer
support for the rationale behind an
important argument.

COMMON STRUCTURE

KA Descriptions should use the following
structure:

* Acronyms

* Introduction

* Breakdown of Topics of the KA (including
a figure describing the breakdown)

* Matrix of Topics vs. Reference Material

* Further Reading

* References

WHAT DO WE MEAN BY
“GENERALLY RECOGNIZED
KNOWLEDGE”?

The Software Engineering Body of Knowledge
is an all-inclusive term that describes the sum
of knowledge within the profession of software
engineering. However, the SWEBOK Guide
seeks to identify and describe the subset of the
body of knowledge that is generally recognized
or, in other words, the core body of knowledge.
To better illustrate what “generally recognized”
knowledge is relative to other types of knowl-
edge, Figure A.1 proposes a three-category
schema for classifying knowledge.

The Project Management Institute, in
its Guide to the Project Management Body of
Knowledge, defines “generally recognized”
knowledge for project management as:

that subset of the project management body of
knowledge generally recognized as good prac-
tice. “Generally recognized” means the knowl-
edge and practices described are applicable to
most projects most of the time, and there is con-
sensus about their value and usefulness. “Good
practice” means there is general agreement that
the application of these skills, tools, and tech-
niques can enhance the chances of success over
a wide range of projects. “Good practice” does
not mean that the knowledge described should
always be applied uniformly to all projects; the
organization and/or project management team
is responsible for determining what is appro-

priate for any given project [1].



“Generally accepted” knowledge could also
be viewed as knowledge to be included in
the study material of a software engineering
licensing exam (in the US) that a graduate
would take after completing four years of
work experience. These two definitions should
be seen as complementary.

KA editors are also expected to be some-
what forward-looking in their interpre-
tation by taking into consideration not
only what is “generally recognized” today
but also what they expect will be “gener-
ally recognized” in a three- to five-year
time frame.

LENGTH OF KA DESCRIPTION

KA Descriptions are to be roughly 10 to
20 pages using the formatting template for
papers published in conference proceedings
of the IEEE Computer Society. This includes
text, references, appendixes, tables, etc. This,
of course, does not include the reference mate-
rials themselves.

IMPORTANT RELATED
DOCUMENTS

2009
Curriculum — Guidelines  for

Software

Graduate  Software
(GSwE2009):

Graduate Degree  Programs in
Engineering, 2009 [2].

Engineering

'This document “provides guidelines and rec-
ommendations” for defining the curricula of
a professional master’s-level program in soft-
ware engineering. The SWEBOK Guide is
identified as a “primary reference” in devel-
oping the body of knowledge underlying
these guidelines. This document has been
officially endorsed by the IEEE Computer
Society and sponsored by the Association for
Computing Machinery.

ISO/IEC/IEEE 12207:2017 Standard

for Systems and Software Engineering —
Software Life Cycle Processes [3].
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This standard is considered the key standard
regarding the definition of life cycle pro-
cesses and has been adopted by the two main
standardization bodies in software engi-
neering: ISO/IEC JTC1/SC7 and the IEEE
Computer Society Software and Systems
Engineering Standards Committees. It also
has been designated a pivotal standard by the
Software and Systems Engineering Standards
Committee (S2ESC) of the IEEE.

Even though we do not intend the SWEBOK
Guide to be fully 12207-conformant, this stan-
dard remains akey input to the SWEBOK Guide,
and special care will be taken throughout the
SWEBOK Guide regarding the compatibility
of the Guide with the 12207 standard.

“Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree
Programs in Software Engineering,” IEEE
Computer Society and Association for
Computing Machinery, 2015; https:/www.
acm.org/binaries/content/assets/education/
$e2014.pdf [4].

'This document describes curriculum guidelines
for an undergraduate degree in software engi-
neering. The SWEBOK Guide is identified as
“one of the primary sources” in developing the
body of knowledge underlying these guidelines.

ISO/IEC/IEEE 24765:2017 Software and
Systems Engineering — Vocabulary; https://
www.computer.org/sevocab [5].

'The hierarchy of references for terminology is
Merriam-Webster’s Collegiate Dictionary (11th
ed.) [6], ISO/IEC/IEEE 24765 [5] and newly

proposed definitions, if required.

“SoftwareProfessional CertificationProgram,”
IEEE Computer Society; https://www.
computer.org/education/certifications [7].

Information on the certification and asso-
ciated professional development products
developed and offered by the IEEE Computer
Society for professionals in the field of soft-
ware engineering can be found on this
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website. The SWEBOK Guide is foundational
to these products.

OTHER DETAILED GUIDELINES

When referencing the Guide to the Software
Engineering Body of Knowledge, use the title
SWEBOK Guide.

For the purpose of simplicity, avoid foot-
notes, and try to include their content in the
main text.

Use explicit references to standards, as
opposed to simply inserting numbers refer-
encing items in the bibliography. We believe
this approach allows the reader to be better
exposed to the source and scope of a standard.

The text accompanying figures and tables
should be self-explanatory or have enough
related text. This ensures that the reader
knows what the figures and tables mean.

To make sure that some information in
the SWEBOK Guide does not become rap-
idly obsolete and in order to reflect its generic
nature, please avoid directly naming tools and
products. Instead, try to name their functions.

EDITING

Editors of the SWEBOK Guide, as well as profes-
sional copy editors, will edit KA Descriptions.
Editing includes copy editing (grammar, punc-
tuation and capitalization), style editing (con-
formance to the Computer Society style guide),
and content editing (flow, meaning, clarity,
directness and organization). The final editing
will be a collaborative process in which the edi-
tors of the SWEBOK Guide and the KA editors
will work together to achieve a concise, well-
worded and useful KA Description.

RELEASE OF COPYRIGHT

All intellectual property rights associated
with the SWEBOK Guide will remain with
the IEEE. KA editors must sign a copyright

release form.

Itis also understood that the SWEBOK Guide
will continue to be available free of charge in
the public domain in at least one format, pro-
vided by the IEEE Computer Society through
web technology or by other means.

(For more information, see www.computer.

org/copyright.htm.)
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IEEE AND ISO/IEC STANDARDS

Appendix B

ACRONYMS

EIC International Electrotechnical
Commission

1SO International Organization for
Standardization

JTC Joint Technical Committee

MSS | Management System Standard

S2ESC | Systems and Software Engineering
Standards Committee

SC Subcommittee

SUPPORTING THE SOFTWARE
ENGINEERING BODY OF
KNOWLEDGE (SWEBOK)

1. Overview

'The purpose of this appendix is to describe the
relationship between IEEE software engi-
neering standards and the SWEBOK and to
introduce the more prominent international
software engineering standards most directly
related to the SWEBOK knowledge areas
(KA). A summary list of some useful stan-
dards for software engineering, including all
those referenced in this document, is in B.9.

1.1 The SWEBOK and standards

The SWEBOK and other bodies of knowl-
edge are closely related to standards for soft-
ware engineering, and standards are cited
as resources in knowledge areas (KA) in the
SWEBOK. Standards for software engi-
neering extend and apply the generally accepted
body of knowledge that is collected in the
SWEBOK. Conversely, standards also define

and organize the systematic knowledge that
is then reflected in collected bodies of knowl-
edge. However, the SWEBOK has a different
purpose from most software engineering stan-
dards. The SWEBOK summarizes gener-
ally accepted concepts and experience-based
information about how software engineering
is practiced. This knowledge summary can
be applied in various ways: to define a curric-
ulum for educating software engineers, or for
employers or certification bodies determine if
a person has the knowledge and accepts the
ethical values needed to practice software
engineering or to be certified.

In contrast, a standard is a “document,
established by consensus and approved by a
recognized body, that provides, for common
and repeated use, rules, guidelines or charac-
teristics for activities or their results, aimed
at the achievement of the optimum degree of
order in a given context” (ISO/IEC 29110-1-
1:2024). In standards, the “Rules, guidelines,
or characteristics” are expressed differently:

* requirements in normative standards,
(stated using shall or the imperative),

* recommended practices (stated using
should)

* other guidance on possible approaches
(stated using may)

Standards allow for global interoperability
for accepted concepts, processes, people, and
products. The existence of standards takes a
very large (possibly infinite) trade space of alter-
natives and normalizes that space, supporting
mutual understanding between acquirers and
suppliers. In that respect, software engineering
standards counter the tendency of competing
organizations to develop unique, proprietary

B-1
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products that do not interoperate outside
their own suite. When standards are open, so
that organizations of all sizes can meet their
requirements, demand for trustworthy prod-
ucts and services increases to the benefit of
many suppliers and acquirers.

Standards are voluntary; an individual or
organization can choose to conform to their
requirements and follow their recommenda-
tions. When the standard is incorporated in
contracts or other agreements, laws, and reg-
ulations, then compliance with the standard
becomes mandatory.

1.2 Dypes of Standards

Standards can be characterized by what part
of software engineering they standardize:
concepts and terms, processes, products,
people, or assessment of capabilities.

Some software engineering standards
simply present concepts (characteristics) and
define terms, perhaps even establishing a
schema of knowledge about a software engi-
neering topic. An example of this type of
standard is ISO/IEC/IEEE 24765 Systems
and software engineering: Vocabulary, which
is freely available online at www.computer.
org/sevocab.! However, most software engi-
neering standards describe one or more of
the software engineering processes and give
requirements and recommendations about
how to perform that process. The primary
process standard in software engineering
is ISO/IEC/IEEE 12207, Systerns and soft-
ware engineering: Software life cycle processes.
There is even a standard for how to describe
a process: ISO/IEC/IEEE 24774, Systems
and software engineering — Life cycle manage-
ment — Specification for process description. It
describes the purpose, outcomes, activities,
tasks, and possibly the inputs, outputs, and
other features of a process. Process standards
should not be confused with procedures or
instructions; they do not offer detailed recipes
or step-by-step instructions for doing soft-
ware engineering.

1 http://pascal.computer.org/sev_display/index.action.

A few software engineering standards
have standardized descriptions of products
of software engineering, such as models or
information products like a project manage-
ment plan (ISO/IEC/IEEE 16326). Another
notable standard for information products is
ISO/IEC/IEEE 15289, Systems and software
engineering — Contents of life cycle information
items (documentation). Initially, most software
engineering standards were standards for a
prominent information product, a plan. These
allowed customers (acquirers of software) to
understand and compare what their suppliers
would produce (a product). A standard for a
plan describes what will be produced or deliv-
ered, what methods and techniques will be
used, and what activities will be performed.
In recent years, most of the standards for
plans have been revised to become standards
for software engineering processes.

Besides standards for concepts, processes,
and products, there are also standards for peo-
ple’s skills, knowledge, or abilities, and stan-
dards for certification schemes and bodies
of knowledge in software engineering. An
example is ISO/IEC 24773-1:2019, Software
and systems engineering — Certification of soft-
ware and systems engineering professionals —
Part 1: General requirements. Reviews and
assessments can be standardized for soft-
ware engineers, organizations, processes, and
work products.

1.3 Sources of Software Engineering Standards

Although there are thousands of pages in hun-
dreds of systems and software engineering
standards, guides, textbooks and handbooks,
there are only two international organizations
accredited to produce systems and software
engineering standards: ISO/IEC JTC 1/SC 7
and IEEE. Both have produced software engi-
neering standards for over thirty-five years. Both
are committed to produce standards using doc-
umented, consensus-based processes with open
participation. ISO/IEC JTC 1 (International
Organization for Standardization / International
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Electrotechnical Commission Joint Technical
Committee) / SC 7 (Subcommittee), Software
and Systems Engineering, produces standards
through its membership of national standards
bodies. JTC 1/SC 7 has a portfolio of over
two hundred standards. The IEEE Computer
Society Systems and Software Standards
Committee (S2ESC) produces standards in
working groups of individual experts. It main-
tains about fifty standards, of which about
80% have been approved as ISO/IEC/IEEE
joint standards. These are IEEE standards
adopted by ISO/IEC JTC 1/SC 7, or stan-
dards that are jointly developed and main-
tained with ISO/IEC JTC 1 and designated
as ISO/IEC/IEEE. The aim of these jointly
developed standards is to have a coordinated
collection of consistent standards for interna-
tional use. For the ISO/IEC/IEEE standards
described in this appendix, the IEEE version
and the ISO/IEC version are substantively
identical. The respective versions may have
different front and back matter but the tech-
nical content is exactly the same.

Standards can be purchased from the
IEEE, ISO, and IEC websites, from national
standards organizations, and from commer-
cial resellers. Academic institutions and soft-
ware engineering organizations can purchase
or subscribe to collections of standards for
use by their staffs. A few standards are freely
available, generally those that provide intro-
ductions to concepts or terminology.

In both IEEE and ISO/IEC JTC 1, stan-
dards for systems engineering are maintained
by the same committee as those for software
engineering. Most of the standards apply to
both, especially when software is considered as
a system or as the major component of a system
of interest. So, instead of making fine distinc-
tions, this appendix covers both as applicable
to software engineering. It does not mention
older, now stabilized standards dealing with
the foundations of computing or computing
languages and basic programming, mathemat-
ical, or engineering concepts.

ISO and IEEE have their own numbering
systems for their standards. When an IEEE
standard is adopted by ISO/IEC JTC 1, it
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is typically renumbered to a 5-digit number,
e.g., IEEE 1062 becomes ISO/IEC/IEEE
41062. ISO standards have long, taxonom-
ical titles with three and four levels of classi-
fication. The first level shows the general area
(e.g. systems and software engineering); the
second level is the main title of the standard,
and the third level provides even more detail,
especially for multi-part standards. To avoid
cumbersome repetition, this appendix often
uses a shortened title of the standard or simply
cites it by number. The full title is given in the
list in B.9. All of these software engineering
standards are copyright protected, and IEEE
standard numbers are trademarked.

2. 'The software engineering standards
landscape

Figure B.1 presents an overview of the most
prominent software engineering standards,
mainly from the perspective of how other
standards relate to the major software engi-
neering life cycle process standard, ISO/IEC/
IEEE 12207, software engineering processes.
It is closely related to the SWEBOK in that
both present information related to many
of the same software life cycle processes.
Also in the upper portion of Figure B.1 are
the foundational standards, such as the spe-
cialized vocabulary for systems and soft-
ware engineering (SEVOCAB, ISO/IEC/
IEEE 24765) and a specification for how to
describe processes (ISO/IEC/IEEE 24774).
There are standards for how to plan for and
manage software engineering (ISO/IEC/
IEEE 24748-5) and how to conduct rigorous
reviews and audits, appropriate for critical
software like aerospace and defense systems
(ISO/IEC/IEEE 24748-8).

Using the life cycle process model of 12207
as described in the following section, there
are many more specialized standards covering
individual processes and modern approaches to
the processes, such as ISO/IEC/IEEE 32675,
DevOps, as well as IEEE 1012, Verification
and validation, and ISO/IEC/IEEE 29119,
software testing (in multiple parts). The life
cycle processes in 12207 generally focus on a



B-4 SWEBOK® GUIDE V4.0a

= =~
~_~

< Management Systems

ISO/IEC/IEEE 12207

IEEE C{Uide'to ISO/IEC/IEEE 24765
SW Engineering Vocabula
Body of Knowledge (SEVOCZ?I%)
(SWEBOK) $
Life Cycle Processes ISO/IEC/IEEE 24748-4 SE Plans

ISO/IEC/IEEE 24748-8
Reviews and Audits

ISO 9001 Quality
ISO/IEC 20000 Service
. Product X
ISO/IEC 27000 Security - DevOps Process View
1SO/IEC 19770 IT o Individual Processes ISO/IEC/IEEE 32675
Asset Mgmt. .
Information Mgmt:
ISO/IEC/IEEE
15289
\ - /
Systems of systems (SoS) Verification/ | Software Testin
ISO/IEC/IEEE Validation ISONEC/IEE
21839, 21840, 21841 IEEE 1012

Figure B.1. Software Engineering Standards Landscape

single system of interest (SOI) but more spe-
cialized series focus on processes and tools for
product line engineering, and for systems of
systems (SoS). The System of Systems stan-
dards, ISO/IEC/IEEE 21839, 21840, and
21841, explain how to use systems engineering
processes when the system of interest (SOI) is
a constituent part of a system of systems.

The life cycle process standards are intended
to be compatible with other well-known stan-
dards for management systems. According
to ISO, “a management system is the way in
which an organization manages the interre-
lated parts of its business in order to achieve
its objectives.” Management system standards
(MSS) have a consistent structure and frame-
work of requirements, but each MSS covers
a specific aspect of managing and delivering
engineering products and services. MSS
typically come in multiple parts with var-
ious guides for different aspects of their sys-
tems. Well-known MSS related to software
engineering include ISO 9000 for quality
management, ISO/IEC 20000 for service
management, the ISO/TEC 27000 series for
information security management, the ISO/
IEC 19770 series for managing I'T assets like

hardware and software, and the ISO/IEC
30105 series for business process outsourcing
operations.

3. Life cycle process standards

ISO/IEC/IEEE 12207, Software life cycle
processes, and ISO/IEC/IEEE 15288,
System life cycle processes, are intentionally
harmonized for use together. As stated in
ISO/TEC/IEEE 15288:2023, “there is a con-
tinuum of human-made systems from those
that use little or no software to those in which
software is the primary interest. When soft-
ware is the predominant system or element
of interest, ISO/IEC/IEEE 12207 should
be used.” Both standards have identical life
cycle models (the same four process groups, as
shown in Figure B.2) and the same processes.
The processes have the same names, purposes,
and process outcomes (there are minor vari-
ations in a couple of process names) in both
standards. Process activities and tasks differ
between these two foundational standards, as
some aspects of engineering for software sys-

tems are different from systems in general.
Conformance to ISO/IEC/IEEE 12207 or



15288 can be shown either by demonstrating
that all the outcomes of the process have been
achieved, or that all the required activities
and tasks of a process have been performed.

The life cycle processes are presented in
the context of their use on projects, supported
by an organization that provides continuous
services applicable across multiple projects.
However, the processes can be applied in
very small entities which are essentially orga-
nized as a single team, as well as on large pro-
grams and continuing efforts that do not have
a defined end point like a project.

ISO/IEC/IEEE 12207 establishes a common
framework for software life cycle processes,
with well-defined terminology that can be
referenced by the software industry. ISO/
TEC 12207 applies to the acquisition of sys-
tems and software products and services and
to the supply, development, operation, main-
tenance, and disposal of software systems and
the software portion of a system, whether per-
formed internally or externally to an organi-
zation. Those aspects of system definition and
enabling systems (infrastructure) needed to
provide the context for software products and
services are included. Selected sets of these
processes can be applied throughout the life
cycle for managing and performing the stages
of a system’s life cycle. This is accomplished
through the involvement of all interested
parties, with the goal of achieving customer
satisfaction.

Table B.1 aligns the software life cycle
processes of ISO/IEC/IEEE 12207 to the
SWEBOK KA and identifies related stan-
dards that offer more detailed requirements
and guidance for individual processes. The
SWEBOK KAs do not directly cover all of
the process groups and processes in ISO/
IEC/IEEE 12207. The Agreement processes
(acquisition and supply) are not included, nor
many of the processes in the Organizational
Project-enabling process group, and not all
of the Technical Management or Technical
process group processes. SWEBOK KAs are
selected to cover the essential knowledge
areas applied by individual software engineers
working on projects or ongoing efforts, rather
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Figure B.2. Process groups of ISO/IEC/
IEEE 12207

than those generally handled at higher levels
in the organization or on a more general level.

This version of the SWEBOK has added
the software security KA, which for historical
reasons has been standardized separately from
the systems and software engineering stan-
dards committees. Security is not identified as
a technical process in ISO/IEC/IEEE 12207.
An extensive suite of security standards based
on the ISO/TEC 27001 MSS are developed in
ISO/IEC JTC 1 SC 27, Information security,
cybersecurity, and privacy protection.

Table B.1 also identifies standards that are
intended to identify process-related functions
where software tools and methods should be
applied, or to apply the processes to product
line engineering (see B.6).

4. Extensions and specialized applications

of ISO/IEC/IEEE 12207

Numerous useful standards supplement the
requirements of ISO/IEC/IEEE 12207 to
handle more rigorous or specialized situa-
tions, or to provide more extended guidance
on its concepts and processes. Many of these
standards are parts of the ISO/IEC/IEEE
24748 family.

4.1, Explanations of concepts and several processes

ISO/IEC/IEEE 24748-1, -2 and -3 are
overall guides to the life cycle processes and
invaluable for understanding and applying



B-6 SWEBOK® GUIDE V4.0a

TABLE B.1. RELATED SOFTWARE ENGINEERING STANDARDS AND

KNOWLEDGE AREAS BY ISO/IEC/IEEE 12207 PROCESS GROUP AND PROCESS

25010, 25012

12207 Short title SWEBOK KA | Related standard | Product line or
Clause (ISO/IEC/ tool standard
Number IEEE unless (ISO/TIEC)
otherwise shown)
Agreement
6.1.1 Acquisition 41062, 26512
6,1,2 Supply 41062
Organizational process enabling
6.2.1 Life cycle model Yes 24748-1, 24748-2,
management 24748-3, 33020
6.2.2 Infrastructure 26550
management
6.2.3 Portfolio management 33001 26556
6.2.4 Human Resources Yes, Professional | 24773
management Practice
6.2.5 Quality management Yes, Software IEEE 730,
Quality 25000, 90003
6.2.6 Knowledge management
Technical management
6.3.1 Project planning Yes 16326, 26555
24748-4, 24748-5
6.3.2 Project Yes 16326, 24748-4, | 23396,
assessment, control 24748-5, 24748-7, | 23531, 26555,
26511, 20246 33001, 33002
6.3.3 Decision management
6.3.4 Risk Management 16085, 15026
(all parts)
6.3.5 Configuration Yes IEEE 26559,
Management 828, 16350, 26560, 26561
19770 (all parts)
6.3.6 Information 15289,
management 26511, 26531,
23026, 82079-1
6.3.7 Measurement Yes 15939, 14143,
32430, 19761,
20926, 25020,
25021, 25022,
25023, 25024,
29881, 33003
6.3.8 Quality Assurance Yes IEEE 730,
IEEE 982.1,




APPENDIXB B-7

Technical
6.4.1 Business or 26561
Mission Analysis
6.4.2 Stakeholder needs & Yes 25030
requirements
6.4.3 Systems requirements Yes 29148 26551
definition
6.4.4 Architecture definition | Yes 42010, 42020 26442, 26552
6.4.5 Design definition Yes 24748- 26557, 26580
7000. 26514
6.4.6 System analysis Yes, Models ISO/IEC 24641 | 20246, 26558
and Methods
6.4.7 Implementation Yes, 26553
Construction
6.4.8 Integration Yes, 24748-6
Construction
6.4.9 Verification Yes, Testing IEEE 1012, 23643,26554,
25021,25040, 30130
25041, 25045,
25062, 26513,
29119-1, 29119-2,
29119-3,
33063, 42030
6.4.10 Transition 26562
6.4.11 Validation Yes, Testing IEEE 1012
6.4.12 Operation Yes 32675 23531
6.4.13 Maintenance Yes 14764
6.4.14 Disposal
Software security Yes ISO/IEC 27000
family, 15026
(Parts 1 to 4)
Software Engineering | Yes Numerous
computing foundations historic standards
Software Engineering Yes Numerous his-
Mathematical toric standards
foundations
Software engineering Yes Numerous
Foundations historic standards

systems and software engineering concepts.
ISO/IEC/IEEE 24748-1, Guidelines for
life cycle management, is much more than
a guide to performing the life cycle man-
agement process. It applies to both software
and systems engineering processes, with fur-
ther explanations of system and process con-
cepts. Instead of describing processes, which

are usually applied repeatedly throughout
the life cycle, it includes a detailed descrip-
tion of life cycle stages, covering their pur-
pose and outcomes. There are several models
of life cycle stages, and in ISO/IEC/IEEE
24748-1 the model that is analyzed in detail
includes the following stages: concept, devel-
opment, production, utilization, support, and
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retirement. Since software engineers rarely
focus on production as a stage of interest, an
alternate model for software life cycle stages
is more useful: concept, development, opera-
tions and maintenance, and retirement. Life
cycle models are characterized by their devel-
opment approach: sequential, incremental, or
evolutionary. The life cycle models are com-
pared in a risk-based approach.

ISO/IEC/IEEE 24748-2 is the overall
guide to applying the systems engineering pro-
cesses in ISO/IEC/IEEE 15288. However,
it does not offer line-by-line expansions of
each process, activity, and task, but presents
an overall strategy for transitioning to use of
standardized life cycle processes. There is yet
more explanation of systems concepts, a pre-
sentation of organizational concepts, some
discussion of conformance or adaptation (tai-
loring), of standard processes, and an intro-
duction to model-based systems and software
engineering (MBSSE).

ISO/IEC/IEEE 24748-3, guidelines for
the application of software life cycle pro-
cesses, also offers commentary on concepts of
software systems, organizations and projects,
processes, life cycle states, and life cycle pro-
cess models for software systems. It includes
guidance for each of the processes in ISO/
IEC/IEEE 12207, including further anal-
ysis of process purposes; outcomes and out-
puts; activities, tasks, and approaches; closely
related processes; and related standards.

ISO/IEC/IEEE 32675 DevOps, (IEEE
2675) has the informative subtitle of
“Building Reliable and Secure Systems,
Including Application Build, Package, and
Deployment”. It defines DevOps as a “set of
principles and practices which enable better
communication and collaboration between
relevant stakeholders for the purpose of spec-
ifying, developing, and operating software
and systems products and services, and con-
tinuous improvements in all aspects of the
life cycle.” It expounds on the principles of
DevOps, including business or mission first,
customer focus, left shift and continuous
everything, and systems thinking. (Left-shift
is defined as “prioritizing the involvement

of relevant stakeholders in applying quality
activities, security, privacy, performance,
verification, and validation earlier in the life
cycle”) IEEE 2675 emphasizes the lead-
ership commitment needed for successful
application of DevOps. It reviews many of
the life cycle processes in ISO/IEC/IEEE
12207 to analyze how they are transformed
by DevOps, and discusses the use of DevOps
with agile methods.

In earlier versions, both ISO/IEC/IEEE
24748-4 and 24748-5 covered what to include
in a management plan (Systems Engineering
Management Plan or Software Engineering
Management Plan), respectively. That mate-
rial is still there, but now they also include
guidance for systems engineers and software
engineers, respectively, on the management
planning and control processes, with brief
presentations of related processes.

4.2 More specialized extensions

Although standards are well established for
specialized areas of health and safety, secu-
rity, and environmental concerns, standards
relating ethical values to software systems
are relatively new. The potential for software
systems to cause harm through biased deci-
sions, violations of privacy, or lack of social
responsibility led to the development of ISO/
IEC/IEEE 24748-7000 (IEEE 7000). IEEE
7000 presents a model process for incorpo-
rating ethical values into systems design.
Engineers, their managers, and other stake-
holders benefit from well-defined processes
for considering ethical issues along with
the usual concerns of system performance
and functionality early in the system life
cycle. The standard requires consideration
of values relevant to the culture where the
system is to be deployed. It is applicable
with any life cycle model or development
methodology. The processes in this stan-
dard are intended to be performed concur-
rently with those in ISO/IEC/IEEE 12207
(Table B.3).

Earlier versions of ISO/IEC/IEEE
12207 were considered by some to be overly



prescriptive in terms of required documenta-
tion, reviews, and task sequences. The current
version is intended to be used by any size or
type of organization, having a more strategic,
agile, approach to the processes, with reduced
documentation and review requirements.
However, for highly complex and critical sys-
tems, a more rigorous and structured set of
processes, reviews, and audits was developed
in coordination with the US Department
of Defense and has been specified in ISO/
IEC/IEEE 24748-7:2019 Systems and soft-
ware engineering _— Llﬁ' CyCl@ manag@meni -_—
Part 7: Application of systems engineering on
defense programs and ISO/IEC/IEEE 24748-
8:2019 Systems and software engineering — Life
cycle management — Part 8: Technical reviews
and audits on defense programs. For more gen-
eral use, ISO/IEC 20246 outlines processes
and characteristics for work product reviews
throughout the life cycle, covering both soft-
ware and information products.

ISO/IEC/IEEE 24748-9 is an application
of system and software life cycle processes
in epidemic prevention and control systems.
More generally, it shows ways of doing sys-
tems and software engineering with lim-
ited infrastructure and staff support, such as
“insufficient infrastructure protection, short
delivery cycles, frequent iterative upgrades,
and special requirements such as accuracy,
disaster tolerance, degradation capability,
safety, user capacity and stress testing, and
rapid demand capture.”

4.3 808 standards

Three standards explore how the systems and
software engineering concepts and processes
can be applied to systems of systems (SoS).
ISO/IEC/IEEE 21839 describes how systems
that are constituents of SoS are affected at
each stage in their life cycle. ISO/IEC/IEEE
21940 takes the opposite view, exploring con-
cepts of an SoS and how ISO/IEC/IEEE
15288 can be applied to SoS. ISO/IEC/IEEE
21841 is a brief taxonomy that identifies four
types of SoS: directed, acknowledged, collab-

orative and virtual.
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5. Single Process Standards

ISO/IEC/IEEE 12207 applies to all types
of software engineering with a variety of
life cycle models, techniques, and methods.
Its process descriptions do not go into detail
about how the process should be performed
or which techniques are considered best
practice. To that end, there are numerous
more specialized standards with additional
requirements and guidelines applicable to
most of the software engineering processes.
Table B.1 correlates each process in 1SO/
IEC/IEEE 12207 to the related SWEBOK
KAs, more specialized standards and guid-
ance, and related standards for applying the
process to product lines, tools, and methods.
Table B.2 shows standards referenced in each
knowledge area.

6. Standards for product line, methods, and
tools

A product line is a “set of products or ser-
vices sharing explicitly defined and managed
common and variable features and relying
on the same domain architecture to meet
the common and variable needs of specific
markets” (ISO/IEC 26550:2015) Product
line engineering raises different consider-
ations, especially for ongoing configuration
and release management, maintenance, and
operations, from the basic approach of ISO/
IEC/IEEE 12207, which applies software
engineering from the perspective of a project
within an organization.

Standards in the ISO/IEC 26550 to 26569
series also cover capabilities of tools related to
various software engineering processes and
management tasks. Because software devel-
opment and operations tool capabilities are
continually being expanded and more tightly
integrated to support the DevOps pipeline,
the individual standards in this series are
not closely aligned with current commer-
cial product suites or open-source libraries.
However, the tool standards do suggest useful
features to seek in support of the software
lifecycle.
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TABLE B.2. STANDARDS CITED BY KNOWLEDGE AREA

KA Knowledge Area Cited standards
Number (ISO/IEC/IEEE unless otherwise designated)
Introduction 24765, 12207
1 Software Requirements | 24765, 12207, ISO/IEC 25010, 29148
2 Software Architecture 24765, 12207, 42010
3 Software Design 12207, 24748-7000, 24765
4 Software Construction
5 Software Testing IEEE 1012, ISO/IEC 20246, 24765, ISO/IEC 25010,
29119 (multiple parts), 32675
6 Software Engineering 12207, ISO/TEC 20000, 24765, 32675
Operations
7 Software Maintenance 12207, 14764, 15288, 32675
8 Software Configuration | IEEE 828, 24765, 12207
Management
9 Software Engineering 12207, 32675
Management
10 Software 12207, 24748-1, 24748-3, 24765, 24774, ISO/IEC
Engineering Process 25000, 29110, 33001, 32675
11 Software Engineering
Models and Methods
12 Software Quality IEEE 730, IEEE 982.1, IEEE 1012, IEEE 1228, IEEE
1633, ISO 9001, 12207, 15026-1, 15288, 20000, 20246,
24765, 25010, 27001, 33061, 90003, TEC 60300
13 Software Security ISO/IEC 15408-1, ISO/IEC 18045, ISO/IEC 19770-1,
ISO/IEC 21827, 25010, ISO/IEC 27000, ISO/IEC
27001, ISO/TEC 27032
14 Software Engineering ISO/IEC 24773-1, ISO/IEC 24773-4
Professional Practice
15 Software 12207, 15288
Engineering Economics
16 Computing Foundations | 12207, 24765
17 Mathematical
Foundations
18 Engineering Foundations | 24765

7. Process assessment standards

activities and achievement of outcomes (arti-
facts like work products and information

Process assessment is a long-standing method
of confirming the capabilities, quality, and
maturity of software engineering processes,
and encouraging process improvement. Process
audits look for evidence of performance of

items). The assumption is that a repeatable pro-
cess with organizational support performed by
competent practitioners is more likely to pro-
duce acceptable software products and ser-
vices. The ISO/IEC 33000 family of standards
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TABLE B.3. ALIGNMENT OF ETHICAL VALUE PROCESSES IN ISO/IEC/IEEE
24748-7000 (IEEE 7000) AND SOFTWARE ENGINEERING PROCESSES IN ISO/

IEC/IEEE 12207

IEEE Std 7000 process clause

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2023 process clause

7. Concept of Operations (ConOps)
and Context Exploration

6.4.1 Business or mission analysis

8. Ethical Values Elicitation and
Prioritization

6.4.1 Business or mission analysis,
6.4.2 Stakeholder needs and requirements definition

9. Ethical Requirements Definition

6.4.2 Stakeholder needs and requirements definition,
6.4.3 System requirements definition

10. Ethical Risk-Based Design

6.4.4 Architecture definition,
6.4.5 Design definition

11. Transparency Management

6.3.6 Information management

currently includes over twenty active standards
related to process assessment. The overall
architecture and content of the ISO/IEC
330xx family is described in ISO/IEC 33001.
A process assessment is conducted according
to a documented assessment process, which
identifies the rating method for process attri-
butes and how to determine process ratings.
ISO/IEC 33061 is the standard for process
assessment which is aligned with ISO/IEC/
IEEE 12207 software engineering processes,
treated as a process reference model.

8. Professional Skills and Knowledge
Standards

The ISO/IEC 24773 series contains require-
ments specifically related to certifications for
software and systems engineering profes-
sionals. It is useful to industry organizations
seeking to compare various certifications for
professionals in systems and/or software engi-
neering; to individual professionals seeking to
obtain certification; and to employers who
may choose to recognize such certifications.
These standards are intended for international
use, and do not replace national or regional
licensing or registration requirements for
engineers. ISO/IEC 24773-1 is an overview
of certification concepts, and requirements for
the certification processes and certification

schemes applicable to software and systems
engineering. ISO/IEC 24773-4 provides spe-
cific requirements for certification bodies in
software engineering. It specifies this IEEE

SWEBOK as the reference body of knowl-
edge in software engineering.

9. Selected Software Engineering
Standards

This is not an exhaustive list of standards
related to software engineering or spon-
sored by the IEEE Systems and Software
Engineering Standards Committee (S2ESC)
or ISO/IEC JTC 1/SC7, Software and sys-
tems engineering. Those listed are considered
more authoritative, relevant, and helpful for
SWEBOK users.

The standards described in this appendix
are continually being revised or replaced by
newer standards. Users of standards should
look for the most recent version and for newer
titles relating to emerging topics in software
engineering, such as digital engineering or
standards related to artificial intelligence (AI).

* IEEE 730-2014 IEEE Standard for
Software Quality Assurance Processes

* IEEE 828-2012 IEEE Standard for
Configuration Management in Systems
and Software Engineering
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IEEE 982.1-2005 IEEE Standard
Dictionary of Measures of the Software
Aspects of Dependability

IEEE 1012-2016 IEEE Standard
for System, Software, and Hardware
Verification and Validation

IEEE 1228-1994 (R2002) IEEE
Standard for Software Safety Plans
IEEE 1633-2016 IEEE Recommended
Practice on Software Reliability

ISO 9000:2015 Quality management
systems — Fundamentals and vocabulary
ISO 9001:2015 Quality management
systems — Requirements
ISO/IEC/IEEE  12207:2017 Systems
and software engineering: Software
engineering processes

ISO/IEC 14143 Information technology
— Software measurement — Functional
size measurement (multiple parts)
ISO/IEC/IEEE 14764:2021 Software
Engineering — Software Life Cycle
Processes - Maintenance
ISO/IEC/IEEE 15026-1:2019 Systems
and Software Engineering — Systems
and Software Assurance — Part 1:
Concepts and Vocabulary
ISO/IEC/IEEE 15026-2:2021 Systems
and Software Engineering — Systems
and Software Assurance — Part 2:
Assurance Case

ISO/IEC 15026-3:2023 Systems and
Software Engineering — Systems and
Software Assurance — Part 3: System
Integrity Levels

ISO/IEC/IEEE 15026-4:2021, Systems
and Software Engineering — Systems
and Software Assurance — Part 4:
Assurance in the Life Cycle
ISO/IEC/IEEE 15288:2023 Standard
for Systems and Software Engineering
— System Life Cycle Processes
ISO/IEC/IEEE  15289:2019  Systems

and Software Engineering — Content
of Life-Cycle Information Products
(Documentation)

ISO/IEC 15408-1:2022 Information
security, cybersecurity and privacy pro-
tection — Evaluation criteria for IT

security — Part 1: Introduction and
general model

ISO/IEC/IEEE  15939:2017  Systems
and  Software  Engineering  —
Measurement Process

ISO/IEC/IEEE 16085:2021 Systems and
Software Engineering —Software Life
Cycle Processes — Risk Management
ISO/IEC/IEEE  16326:2019 Systems
and Software Engineering — Life Cycle
Processes — Project Management
ISO/IEC 16350:2015 Information tech-
nology — Systems and software engi-
neering — Application management
ISO/IEC 18045:2022 Information secu-
rity, cybersecurity and privacy protection
— Evaluation criteria for IT security —
Methodology for I'T security evaluation
ISO/IEC 19761:2011 Software
Engineering — COSMIC: A Functional
Size Measurement Method

ISO/IEC  19770-1:2017 Information
technology — IT asset management —
Part 1: IT asset management systems
— Requirements

ISO/IEC  19770-2:2015 Information
technology — IT asset management —
Part 2: Software identification tag
ISO/IEC  19770-3:2016 Information
technology — IT asset management —
Part 3: Entitlement schema

ISO/IEC  19770-4:2017 Information
technology — IT asset management —
Part 4: Resource utilization measurement
ISO/IEC  19770-5:2015 Information
technology — IT asset management —
Part 5: Overview and vocabulary
ISO/IEC  19770-8:2020 Information
technology — IT asset management
— Part 8: Guidelines for mapping of
industry practices to/from the ISO/IEC
19770 family of standards

ISO/IEC 19770-11:2021 Information
technology — IT asset management —
Part 11: Requirements for bodies pro-
viding audit and certification of I'T asset
management systems

ISO/IEC  20000-1:2018  Information
Technology — Service Management



— Part 1: Service management system
requirements

ISO/IEC 20246:2017 Software and sys-
tems engineering — Work product reviews
ISO/IEC 20741:2017 Systems and soft-
ware engineering — Guideline for the
evaluation and selection of software engi-
neering tools

ISO/IEC  20926:2009 Software and
Systems Engineering —  Software
Measurement — IFPUG Functional
Size Measurement Method

ISO/IEC 20968:2002 Software
Engineering — Mk II Function Point
Analysis — Counting Practices Manual
ISO/IEC 21827:2008 Information tech-
nology — Security techniques — systems
security engineering — capability matu-
rity model® (SSE-CMM®)
ISO/IEC/IEEE  21839:2019  Systems
and software engineering — system of
systems (SoS) considerations in life cycle
stages of a system

ISO/IEC/IEEE 21840:2019 Systems
and software engineering — Guidelines
for the utilization of ISO/IEC/IEEE
15288 in the context of system of
systems (SoS)

ISO/IEC/IEEE  21841:2019  Systems
and software engineering — Taxonomy
of systems of systems

ISO/IEC/IEEE 23026:2023 Systems
and software engineering — Engineering
and management of websites for systems,
software, and services information
ISO/IEC 23396:2020 Systems and soft-
ware engineering — Capabilities of
review tools

ISO/IEC 23531:2020 Systems and soft-
ware engineering — Capabilities of issue
management tools

ISO/IEC 24570:2018 Software engi-
neering — NESMA functional size
measurement method — Definitions and
counting guidelines for the application of
function point analysis

ISO/IEC/IEEE 24641:2023 Systems
and Software engineering — Methods
and tools for model-based systems and
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software engineering

ISO/IEC/IEEE 24748-1:2024 Systems
and software engineering — Life cycle
management — Part 1: Guidelines for
life cycle management

ISO/IEC/IEEE 24748-2:2024 Systems
and software engineering — Life cycle
management — Part 2: Guidelines for
the application of ISO/IEC/IEEE 15288
(system life cycle processes)
ISO/IEC/IEEE 24748-3:2020 Systems
and software engineering — Life cycle
management — Part 3: Guidelines for
the application of ISO/IEC/IEEE 12207
(software life cycle processes)
ISO/IEC/IEEE 24748-4:2016 Systems
and software engineering — Life cycle
management — Part 4: Systems engi-
neering planning

ISO/IEC/IEEE 24748-5:2017 Systems
and software engineering — Life cycle
management — Part 5: Software devel-
opment planning

ISO/IEC/IEEE 24748-6:2023, Systems
and Software Engineering — Life Cycle
Management — Part 6: Systems and
Software Integration

ISO/IEC/IEEE 24748-7:2019 Systems
and software engineering — Life cycle
management — Part 7: Application of
systems engineering on defense programs
ISO/IEC/IEEE 24748-8:2019 Systems
and software engineering — Life cycle
management — Part 8: Technical reviews
and audits on defense programs
ISO/IEC/IEEE 24748-9:2023 Systems
and software engineering, prevention and
control systems

ISO/IEC/IEEE 24748-7000:2022
Model Process for Addressing Ethical
Concerns during System Design
ISO/IEC/IEEE 24765:2017 Systems
and Software Engineering — Vocabulary,
available at www.computer.org/sevocab
ISO/IEC 24773-1:2019 Software and
systems engineering — Certification of
software and systems engineering profes-
sionals — Part 1: General requirements
ISO/IEC 24773-4:2023 Software and
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systems engineering — Certification of
software and systems engineering profes-
sionals — Part 4: Software engineering

ISO/IEC/IEEE  24774:2021 Systems

and software engineering — Life cycle
management — Specification for process
description

ISO/IEC 25000:2014 Systems and soft-
ware engineering — Systems and software
Quality Requirements and Evaluation
(SQuaRE) — Guide to SQuaRE
ISO/IEC 25001:2014 Systems and soft-
ware engineering — Systems and software
Quality Requirements and Evaluation
(SQuaRE) — planning and management
ISO/IEC  25010:2023 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — System and
software quality models

ISO/IEC 25012:2008 Software engi-
neering — Software product Quality
Requirements and Evaluation (SQuaRE)
— Data quality model

ISO/IEC  25020:2019 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Quality mea-
surement framework

ISO/IEC  25021:2012 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Quality mea-
sure elements

ISO/IEC  25022:2016 Systems and
software engineering — Systems and
software quality requirements and eval-
uation (SQuaRE) — Measurement of
quality in use

ISO/IEC  25023:2016 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Measurement
of system and software product quality
ISO/IEC  25024:2015 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Measurement
of data quality

ISO/IEC  25030:2019 Systems and
software engineering — Systems and
software quality requirements and eval-
uation (SQuaRE) — Quality require-
ments framework

ISO/IEC 25040:2011 Systems and soft-
ware engineering — Systems and software
Quality Requirements and Evaluation
(SQuaRE) — Evaluation process
ISO/IEC  25041:2012 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Evaluation
guide for developers, acquirers and inde-
pendent evaluators

ISO/IEC  25045:2010 Systems and
software engineering — Systems and
software Quality Requirements and
Evaluation (SQuaRE) — Evaluation
module for recoverability

ISO/IEC 25051:2014 Software engi-
neering — Systems and software Quality
Requirements and Evaluation (SQuaRE)
— Requirements for quality of Ready
to Use Software Product (RUSP) and
instructions for testing

ISO/IEC 25062 Software Product
Quality Requirements and Evaluation
(SQuaRE) — Common Industry Format
(CIF) for Usability

ISO/IEC 26442:2019 Software and sys-
tems engineering — Tools and methods
for product line architecture design
ISO/IEC/IEEE 26511:2018 Systems and
software engineering — Requirements
for managers of information for users of
systems, software, and services
ISO/IEC/IEEE 26512:2018 Systems and
software engineering — Requirements
for acquirers and suppliers of informa-
tion for users

ISO/IEC/IEEE 26513:2017 Systems and
software engineering — Requirements
for testers and reviewers of informa-
tion for users

ISO/IEC  26514:2021 Systems and
Software Engineering — Design and
development of information for users
ISO/IEC/IEEE 26515:2018 Systems and



software engineering — Developing infor-
mation for users in an agile environment
ISO/IEC/IEEE 26531:2023 Systems
and software engineering — Content
management for product life-cycle, user
and service management documentation
ISO/IEC 26550:2015 Software and sys-
tems engineering — Reference model for
product line engineering and management
ISO/IEC 26551:2016 Software and sys-
tems engineering — Tools and methods
for product line requirements engineering
ISO/IEC 26552:2019 Software and sys-
tems engineering — Tools and methods
for product line architecture design
ISO/IEC 26553:2018 Information tech-
nology — Software and systems engi-
neering — Tools and methods for product
line realization

ISO/IEC 26554:2018 Information tech-
nology — Software and systems engi-
neering — Tools and methods for product
line testing

ISO/IEC 26555:2015 Software and sys-
tems engineering — Tools and methods
for product line technical management
ISO/IEC 26556:2018 Information tech-
nology — Software and systems engi-
neering — Tools and methods for product
line organizational management
ISO/IEC 26557:2016 Software and sys-
tems engineering — Methods and tools
for variability mechanisms in software
and systems product line

ISO/IEC 26558:2017 Software and sys-
tems engineering — Methods and tools
for variability modelling in software and
systems product line

ISO/IEC 26559:2017 Software and sys-
tems engineering — Methods and tools
for variability traceability in software and
systems product line

ISO/IEC 26560:2019 Software and sys-
tems engineering — Tools and methods
for product line product management
ISO/IEC 26561:2019 Software and sys-
tems engineering — Methods and tools
for product line technical probe
ISO/IEC  26562:2019 Software and
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systems  engineering —  Methods
and tools for product line transition
management

ISO/IEC 26580:2021 Software and sys-
tems engineering — Methods and tools
for the feature-based approach to software
and systems product line engineering
ISO/IEC  27000:2018  Information
technology — Security techniques —
Information security management sys-
tems — Overview and vocabulary
ISO/IEC 27001:2022 Information secu-
rity, cybersecurity and privacy protection
— Information security management
systems — Requirements

ISO/IEC  27032:2012  Information
technology — Security techniques —
Guidelines for cybersecurity

ISO/IEC 29110-1-1:2024 Systems and
software engineering - Lifecycle pro-
files for very small entities (VSEs) Part
1-1: Overview

ISO/IEC  29110-2-1:2015  Software
engineering — Lifecycle profiles for
Very Small Entities (VSEs) — Part 2-1:
Framework and taxonomy

ISO/IEC TR 29110-5-3:2018 Systems
and software engineering — Lifecycle
profiles for Very Small Entities (VSEs)
— Part 5-3: Service delivery guidelines
ISO/IEC/IEEE 29119-1: 2022 Software
and systems engineering — Software
testing — Part 1: Concepts and
definitions

ISO/IEC/IEEE 29119-2: 2021 Software
and systems engineering — Software
testing — Part 2: Test processes
ISO/IEC/IEEE 29119-3: 2021 Software
and systems engineering — Software
testing — Part 3: Test documentation
ISO/IEC/IEEE 29119-4 Software and
systems engineering — Software testing
— Part 4: Test techniques
ISO/IEC/IEEE 29119-5: 2016 Software
and systems engineering — Software
testing— Part 5: Keyword-Driven Testing
ISO/IEC TR 29119-6:2021 Software
and systems engineering — Software
testing — Part 6: Guidelines for the use
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of ISO/IEC/IEEE 29119 (all parts) in
agile projects

ISO/IEC TR 29119-11:2020 Software
and systems engineering — Software
testing — Part 11: Guidelines on the
testing of Al-based systems
ISO/IEC/IEEE 29148:2018. Systems
and Software Engineering — Life Cycle
Processes — Requirements Engineering
ISO/IEC 30130:2016 Software engi-

neering — Capabilities of software
testing tools

ISO/IEC  33001:2015  Information
technology — Process assessment —

Concepts and terminology

ISO/IEC  33002:2015  Information
technology — Process assessment —
Requirements for performing process
assessment

ISO/IEC  33003:2015  Information
technology — Process assessment —
Requirements for process measurement
frameworks

ISO/IEC  33004:2015  Information
technology — Process assessment —
Requirements for process reference, pro-
cess assessment and maturity models
ISO/IEC TR 33014:2013 Information
technology — Process assessment —
Guide for process improvement
ISO/IEC 33020:2019 Information tech-
nology — Process assessment — Process
measurement framework for assessment
of process capability

ISO/IEC TS 33061:2021 Information
technology — Process assessment —
Process assessment model for software
life cycle processes

ISO/IEC 33063:2015 Information tech-
nology — Process assessment — Process
assessment model for software testing
ISO/IEC/IEEE 32430 Software engi-
neering — Standard for software
non-functional size measurements
ISO/IEC/IEEE 32675:2021 DevOps:
Building Reliable and Secure Systems
Including Application Build, Package,
and Deployment

ISO/IEC 38500:2008 Corporate gover-
nance of information technology
ISO/IEC/IEEE 41062:2023 Software
engineering — Recommended practice

for software acquisition
ISO/IEC/IEEE 42010:2022 Software,

systems and enterprise — Architecture
description

ISO/IEC/IEEE 42020:2019: Software,
systems and enterprise — Architec-

ture processes

ISO/IEC/IEEE 42030: 2019 Software,
systems, and enterprise — Architecture
evaluation framework

IEC 60300-1:2014 Dependability man-
agement — Part 1: Guidance for manage-
ment and application.

IEC/IEEE 82079-1 2019 Preparation
of Information for Use (Instructions for
Use) of Products — Part 1: Principles and
General Requirements

ISO/IEC/IEEE 90003:2018 Software
engineering — Guidelines for the
application of ISO 9001:2015 to com-
puter software



CONSOLIDATED REFERENCE LIST

Appendix C

The Consolidated Reference List identi-
fies all recommended reference materials
(to the level of section number) that accom-
pany the breakdown of topics within each
knowledge area (KA). This Consolidated
Reference List is adopted by the software
engineering certification and associated pro-
fessional development products offered by
the IEEE Computer Society. KA Editors
used the references allocated to their KA
by the Consolidated Reference List as their
Recommended References.

Collectively this Consolidated Reference
List is

¢ Complete: Covering the entire scope of
the SWEBOK Guide.

¢ Sufficient: Providing enough informa-
tion to describe “generally accepted”
knowledge.

* Consistent: Not providing contradictory
knowledge nor conflicting practices.

* Credible: Recognized as providing expert
treatment.

* Current: Treating the subject in a manner
that is commensurate with currently gen-
erally accepted knowledge.

* Succinct: As short as possible (both in
number of reference items and in total page
count) without failing other objectives.

In total, there are 40 reference mate-
rials below.

* JH. Allen et al, Software Security
Engineering: A Guide for Project
Managers, Addison-Wesley, 2008.

e L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 4th
edition, 2021.
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M. Bishop, Computer Security: Art
and Science, 2nd Edition, Addison-
Wesley, 2018.

B. Boechm and R. Turner, Balancing
Agility and Discipline: A Guide for the
Perplexed, Addison-Wesley, 2003.

G. Booch, J. Rumbaugh and I. Jacobson,
The Unified Modeling Language
User Guide, 2nd edition, Addison-
Wesley, 2005.

F. Bott et al.,, Professional Issues in
Software Engineering, 3rd ed., Taylor &
Francis, 2000.

F. Brooks, The Design of Design,
Addison-Wesley, 2010

J.G. Brookshear, Computer Science:
An Opverview, 12th ed., Addison-
Wesley, 2017.

D. Budgen, Software Design, 3rd ed.,
CRC Press, 2021.

EW. Cheney and D.R. Kincaid,
Numerical Mathematics and Computing,
7th ed., Addison Wesley, 2020.

P. Clementsetal., Documenting Software
Architectures: Views and Beyond, 2nd
ed., Pearson Education, 2010.

C. Dotson, Practical Cloud Security,
O’Reilly, 2019.

D. Farley, Modern Software Engineering:
Doing What Works to Build Better
Software  Faster.  Addison-Wesley
Professional, 2022.

R.E. Fairley, Managing and Leading
Software Projects, Wiley-IEEE Computer
Society Press, 2009.

C.Y Laporte, A. April, Software Quality
Assurance, IEEE Computer Society
Press, 1st ed., 2018.

E. Gamma et al., Design Patterns:
Elements of Reusable Object-Oriented
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Software, 1st ed.,
Professional, 1994.
P. Grubb and A.A. Takang, Software
Maintenance: Concepts and Practice, 2nd
ed., World Scientific Publishing, 2003.
A.MJ. Hass, Configuration Management
Principles and Practices, 1st ed., Addison-
Wesley, 2003.

S.H. Kan, Metrics and Models in
Software Quality Engineering, 2nd ed.,
Addison-Wesley, 2002.

G. Kim, J. Humble, P. Debois, J. Willis
and J. Allspaw, The DevOps handbook:
How to create world-class agility, reli-
ability, & security in technology organi-
zations, 2nd ed., I'T Revolution, 2021.
M.W. Maier and E. Rechtin, The Art of
Systems Architecting, 3rd edition, CRC
Press, 2009.

S. McConnell, Code Complete, 2nd ed.,
Microsoft Press, 2004.

J. McGarry et al., Practical Software
Measurement: Objective Information
for Decision Makers, Addison-Wesley
Professional, 2001.

S.J. Mellor and M.J. Balcer, Executable
UML: A Foundation for Model-
Driven Architecture, 1st ed., Addison-
Wesley, 2002.

D. C. Montgomery and G. C. Runger,
Applied Statistics and Probability for
Engineers, 7th ed., Wiley, 2018.

S. Naik and P. Tripathy, Software
Testing and Quality Assurance: Theory
and Practice, Wiley-Spektrum, 2008.

J. Nielsen, Usability Engineering, 1st ed.,
Morgan Kaufmann, 1993.

L. Null and J. Lobur, The Essentials of

Addison-Wesley

Computer Organization and Architecture,
5th ed. Jones and Bartlett Publishers, 2018.
M. Page-Jones, Fundamentals of Object-
Oriented Design in UML, 1st ed.,
Addison-Wesley, 1999.

Project Management Institute and Agile
Alliance, Agile Practice Guide, Project
Management Institute, 2017.

K. Rosen, Discrete Mathematics and
its Applications, 8th ed., McGraw-
Hill, 2018.

N. Rozanski and E. Woods, Software
Systems Architecture: Working with
Stakeholders Using Viewpoints and
Perspectives, 2nd edition, Addison-
Wesley, 2011.

J. Shore and S. Warden, The Art of Agile
Development, O’Reilly Media, 2nd
Edition, 2021.

A. Silberschatz, P.B. Galvin, and G.
Gagne, Operating System Concepts, 8th
ed., Wiley, 2008.

I. Sommerville, Software Engineering,
10th ed., Addison-Wesley, 2016.

R.N. Taylor, N. Medvidovi¢, E. Dashofy,
Software Architecture: Foundations,
Theory, and Practice, Wiley, 2009
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